Purpose : Recently, the eye disease associated with ultraviolet radiation were reported. In this study, the UV-block hydrophilic soft contact lens using 2-ethylhexyl trans-4-methoxy-cinnamate were manufactured and the optical properties of copolymerized materials were measured. Methods: The basic hydrophilic soft contact lens material with addition of Dhb(2,4-dihydroxy benzophenone) 0.5% ~ 1.0%, Thb(2,4,4-trihydroxy benzophenone) 0.5% ~ 1.0% and Hmb(2-hydroxy-4-methoxy benzophenone) 0.5% ~ 1.0% respectively were polymerized and the hydrophilic soft contact lens were manufactured by cast mould method. The lenses were stored in a 0.9% NaCl normal saline for analysis. Results: In the measurement of DHB samples, the optical transmittance showed the UV-B transmittance of 2.1 ~ 4.3%, UV-A transmittance of 19.0 ~ 27.2% and visible transmittance 88.8 ~ 90.1%. And also, in the case of THB samples, the optical transmittance of UV-B, UV-A and visible transmittance was 2.0 ~ 2.4%, 13.6 ~ 18.8% and 89.5 ~ 90.9%, respectively. Also, in the case of HMB samples, the optical transmittance of UV-B, UV-A and visible transmittance was 4.0 ~ 12.3%, 22.5~37.2% and 87.9 ~ 89.2%, respectively. Conclusions: Based on the results of this study, 2-ethylhexyl trans-4-methoxy-cinnamate with benzophenone materials were suitable for use as a material to UV-block hydrophilic lens.
목 적: 본 연구는 hydroxybenzophenone계 물질을 첨가제로 소량의 비율로 사용하여 소프트 콘택트렌 즈 제조 후 광학성 및 물리적 특성을 분석하여 콘택트렌즈 재료로서 활용도를 알아보았다.
방 법: 소프트콘택트렌즈의 주재료인 HEMA와 개시제인 AIBN을 기본조합으로 하고 2-hydroxybenzophenone, 2,4-dihydroxybenzophenone 그리고 2,4,4-trihydroxybenzophenone을 첨가제로 사용하여 각각 공중합하였다.
결 과: 2-Hydroxybenzophenone을 첨가한 콘택트렌즈의 경우 UV-A 86.8~72.2%, UV-B 84.2~70.4%로 소량의 자외선 차단 효과를 나타내었다. 또한 2,4-dihydroxybenzophenone 경우 UV-A 76.2~16.8%, UV-B 66.8~2.0%로 2,4,4,-trihydroxybenzophenone의 경우 UV-A 61.8~11.6% UV-B 50.8~1.4%로 두 물질 모두 자외선 차단 효과가 다소 있는 것으로 나타났다.
결 론: 본 실험 결과로 볼 때 소량 첨가하였을 때 2,4-dihydroxybenzophenone 및 2,4,4,- trihydroxybenzophenone의 경우 자외선 차단 기능을 가진 콘택트렌즈로 다양하게 사용될 것으로 판단된 다.
Purpose : In this study. we compared the UV absorbance of the produced polymer containing the benzophenone group with previous materials and measured the physical properties of the produced contact Jens in order to investigate whether the materia! is suitable for contact lens materials. Methods The crosslinking agent EGDMA and UV-absorbents (2-hydroxy-4-methoxy-benzophenone, 2.4-dihydroxy- benzophenone) were mixed with a certain amount of HEMA. NVP and other raw materials and the mixture were polymerized and measured for physical properties and UV-blocking performance. Results : In cases of contact lenses with added 2-hydroxy-4-methoxy-benzophenone and 2, 4-dihydroxy-benzophenone which showed transmittances of 0. 00~3. 50% and 0. 25~5. 75, respectively for UV-A and UV-B showing a UV-blocking effect. Also. in cases of contact lenses with added 4.4'-Difluorbenzophenone, 4-Fluorbenzophenone, the results showed transparaneies of 40.00~57.50%. 19.25~28.25% respectively for UV-A and UV-B showing that they have UV-blocking effects. Conclusions : Based on the results of this study, the benzophenone group is suitable for use as a materia! to UV-blocking contact lenses.
The benzophenone derivatives(4-CH3O-4'-NO2 and 3,4'-di-NO2) are synthesized by the Fridel-Craft acylation and the nitration method. Electrochemical redox potentials of the benzophenone derivatives (4-CH3O, H, 3-Cl, 3-NO2, 4-NO2, 4-CH3O-4'-NO2, 3,4'-di-NO2) are measured by using cyclic voltammometry. In the relationship of summing Hammett value and redox potential, we find a proportional constant(σ) that shows a good relation with an electrochemical property and a reactivity of the benzophenone derivatives. The benzophenone substituted with the electron donating groups(4-OCH3 and 4-OCH3-4'-NO2) are higher the energy in the LUMO level, then increasing a band-gap energy(Eg), their Egs are obtained as a 3.94 eV and 3.59 eV, respectively.