Background:Rounded shoulder posture (RSP), a postural abnormality, might cause shoulder pain and pathologic conditions. Although most previous research has investigated RSP focusing on the proximal structures of the shoulder, such as the scapula and pectoralis muscles, the relationship between RSP and anterior distal structures of the upper extremity, such as the biceps brachii muscle and elbow joint, is not clearly understood.Objects:This study aimed to investigate the correlations between RSP and the biceps brachii length, elbow joint angle (EJA), pectoralis minor length, general pectoralis major length, humeral head anterior translation (HHAT), glenohumeral internal rotation (IR), external rotation (ER), and horizontal adduction (HAD).Methods:Twelve subjects with RSP (6 male, 6 female) were recruited. All subjects fulfilled the RSP criteria indicated by a distance ≥2.5 cm from the posterior aspect of the acromion to the table in the supine position. The examiner measured each of the following parameters twice: RSP, biceps brachii length, EJA, pectoralis minor length, pectoralis major length, HHAT, glenohumeral IR, ER, and HAD. Pearson’s correlation coefficient(r) was used to assess the correlation between RSP and all the variables.Results:There was a significant moderate positive correlation between RSP and biceps brachii length (r=.55, p=.032), moderate negative correlation between RSP and pectoralis minor length (r=-.62, p=.015), and moderate positive correlation between RSP and HHAT (r=.53, p=.038).Conclusion:The biceps brachii length, pectoralis minor length, and HHAT could be used to evaluate patients with RSP. Better understanding of the correlation between these factors and RSP could help in the development of effective methods to treat patients with this condition in clinical management.
This study has investigated the effect of isometric contractile force and muscle activity applying sperficial heat according to the time from the biceps brachii muscle. In this study, 20 university students participants without musculoskeletal and neurological disorders. By applying a hot pack 5min, 10min, 20min and 30min respectively. After that measurement are skin temperature, contractile force and muscle activity. Skin temperature of the hot 5 min applied that rapidly changing. Increasing the time it takes to apply a variance has been reduced(p<.001). Isometric contractile force was not statistically significant but highest when applying the hot pack 5 minutes and lowest when applying the hot pack 30 minutes(p<.001). Muscle activity and median frequency was highest when applying the hot pack 5 minutes. To analyze the above results, it was found that isometric contractile force and muscle activity changed according to the applying time. These result lead us to the conclusion that this study will be more evidence for changes in muscle contraction to apply hot pack on clinic.
Delayed onset muscle soreness (DOMS) is a painful condition that arises from e+M8xercise-induced muscle damage after unaccustomed physical activities. Various therapeutic interventions have been applied to reduce the intensity and duration of DOMS-related symptoms. Recently, pulsed electromagnetic field (PEMF) intervention has been introduced as an alternative noninvasive treatment for DOMS. This randomized, double-blind, placebo-controlled experiment was conducted to examine the effects of PEMF therapy on DOMS in elbow flexors at 24, 48, and 72 hours after the experimental DOMS induction. Thirty healthy volunteers ( yrs, cm, and kg) participated in this study. Each was randomly assigned to a PEMF or placebo group. On the first day, DOMS was induced in the elbow flexors by repeated isokinetic motions at low () and fast () speeds in all subjects. Thereafter, the PEMF group received 15-min daily treatment with a PEMF device. The placebo group received sham treatment of the same duration. Overall, PEMF application was more effective than the sham treatment in reducing the physiological symptoms associated with the DOMS including perceived soreness, median frequency, and electromechanical delay of the surface electromyography. In addition, median frequency and isokinetic peak torque of the PEMF group recovered to the pre-DOMS induction level earlier than the placebo group. In conclusion, this study suggests that PEMF can be applied as a new recovery strategy in reducing DOMS symptoms. Further experiments are required to examine the effect of the PEMF treatment on different types of exercise conditions and to determine the optimal treatment dosage and duration in a real clinical setting.
Muscle tone (stiffness/hardness) or muscle compliance changes during muscle contraction. The purposes of this study were to assess the intrarater and interrater reliabilities of the Myotonometer®, electronic device that quantifies muscle tone. Two raters used the Myotonometer to assess the right bicep brachia and quadriceps muscles of 30 voluntary persons without any orthopedic or neurological problems (age range, 18~21 yrs). Muscles were measured in a relaxed state and during brief sustained voluntary maximal isometric contraction. Intrarater correlation coefficients were calculated for each muscle and for each condition (relaxed and contracted). Intrarater reliabilities (intraclass correlation coefficients, ICCs) ranged from .778 to .954, relaxed, biceps brachia), .926 to .963 (contracted, biceps brachia), .935 to .990 (relaxed, quadriceps) and .679 to .952(contracted, quadriceps). Interrater reliabilities ranged from .652 to .790 (relaxed, biceps brachii), .813 to .907 (contracted, biceps brachii), .831 to .950 (relaxed, quadriceps) and .849 to .937 (contracted, quadriceps). Myotonometer measurements had high to very high intrarater and interrater reliability for measurements of the biceps brachia and quadriceps muscles.