세라믹 분리막은 높은 열적, 화학적 안정성을 갖기 때문에 극한의 조건에서 운전되는 다양한 산업 공정에 적용할 수 있다. 그러나 투과도와 기계적 강도의 trade-off 현상에 의한 세라믹 분리막 활용에 제약이 있어, 고투과성-고강도 분리막 의 개발이 필요하다. 본 연구에서는 상전이-압출법으로 알루미나 중공사 분리막을 제조하고, 고분자 바인더의 종류와 그 혼합 비에 따른 분리막의 특성 변화를 관찰하였다. 용매인 DMAc (Dimethylacetamide)와 고분자 바인더의 한센 용해도 인자를 비 교하면, PSf (polysulfone)가 DMAc와 높은 용해도 특성을 갖기 때문에 도프 용액의 점도와 토출압력이 높게 나타나 분리막 내부가 치밀한 구조로 형성되기 때문에 높은 기계적 강도를 갖으나 수투과도가 감소하는 것으로 확인되었다. 그에 반해, PES (polyethersulfone)를 이용하여 분리막을 제조하면 기계적 강도가 다소 감소하고 수투과도가 증가하는 것으로 나타났다. 따라 서 분리막 성능과 물성을 최적화하기 위해 PSf와 PES를 혼합하여 분리막을 제조하였으며, 9:1로 혼합하여 제조된 분리막에 서 최적화된 수투과도와 기계적 강도를 얻을 수 있었다.
The effects of particle size of Li-Si alloy and LiCl-KCl addition as a binder phase for raw material of anode were investigated on the formability of the thermal battery anode. The formability was evaluated with respect to filling density, tap density, compaction density, spring-back and compressive strength. With increasing particle size of Li-Si alloy powder, densities increased while spring-back and compressive strength decreased. Since the small spring-back is beneficial to avoiding breakage of pressed compacts, larger particles might be more suitable for anode forming. The increasing amount of LiCl-KCl binder phase contributed to reducing spring-back, improving the formability of anode powder too. The control of particle size also seems to be helpful to get double pressed pellets, which consisted of two layer of anode and electrolyte.
현재 기존의 아날로그 형태의 필름/스크린 방식은 영상 저장 및 전송 등의 문제점이 대두되면서, X선에 반응 하여 전하 캐리어를 생성시키는 광도전체 물질을 사용하는 직접 방식의 디지털 방사선 검출기로의 연구가 활 발히 이루어지고 있다. 본 논문에서는 광도전체 물질인 Lead Oxide와 기존에 많이 연구가 진행 되었던 Lead (Ⅱ) Oxide를 PIB(Particle In Binder) 방식으로 각각 제작하여 그 전기적 특성을 비교 평가하고자 하였다. 기 존의 논문 중 물질의 입체각에 관한 논문에 따르면 정방계의 물질이 사방정계의 물질보다 좋은 특성을 보인다 는 것을 기반으로 하여 PbO가 정방계의 α-PbO와 사방정계의 β-PbO를 비교하였다c. 정방계의 α-PbO와 β -PbO를 PVB(Poly Vinyl Butyral)를 이용한 바인더를 사용하여 PIB(Particle In Binder) 방법으로 제조된 각 시편의 민감도(X-ray sensitivity), 누설전류(Leakage current) 및 SNR(Signal to Noise Rate)와 같은 전기적 특성을 실험을 통해 확인 비교한 것이다. 그리고 시편의 물리적인 특성을 보기 위한 기본적인 SEM(Scanning Electron Microscope) 사진을 촬영하였다. 본 논문에서는 완벽한 α-PbO를 제작하지 못하였으므로 차후 물질 을 제작하는 것에 대한 연구가 더 필요할 것으로 사료된다.