검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        2.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 지구 온난화는 세계 경제발전으로 화석연료 사용이 주범으로 인식하고 있다. 이러한 화석연료를 감소하기 위한 연구는 여러 대체에너지 산업으로 발전하고 있으며, 그 중 우리나라에서 생산할 수 있는 연료는 바이오연료이다. 바이오연료는 화석연료에 의해서 발생하는 환경오염 문제를 줄이면서 경제적인 이익을 주는 지속 가능한 연료이다. 그래서 바이오연료를 친환경에너지로 전환시키는 재생에너지 등에 많은 연구가 진행되고 있다. 따라서 본 실험은 어선에서 사용했던 기관을 다시 리모델링하여 실험장치를 직접 제작 설치하였고, 여러 바이오연료를 사용하여 선박의 경제적이고 친환경적인 운항에 도움을 주고자 연구하였다. 유채유, 대두유, 폐유채유의 배기배출물특성에 미치는 영향을 종합적으로 분석한 결과는 연료의 물리적, 화학적 성분이 비슷하여 선박용 엔진에 사용이 가능하고, 연료소비율과 NOx는 약간 증가하였으나, 매연은 많이 감소하는 경향이 확인되었다.
        4,000원
        3.
        2009.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There are increased in using the bio-ethanol, as the carbon neutral attracts many researchers due to a reduction in carbon dioxide spotted as the global warming gas. A gasoline engine with 100% of the bioethanol was developed and used in Brazil already, but researches of using the bio-ethanol in diesel engines are lack. In this study, combustion tests with blend fuel of the gas oil and bio ethanol by 50% maximally due to a low cetane number of bio-ethanol were accomplished as a basic study of introduction of using the bioethanol in diesel engines. The result was that smoke emission was decreased with increase in proportion of the bio-ethanol, due to the increase of a amount of pre-mixed combustion with ignition delay. Although the amount of CO2 is reduced according as the bio-ethanol is used(carbon neutral), the emission of CO2 with increase in the proportion of the bio-ethanol was more increased due to lower a heat value of bio-ethanol than gas oil.
        4,000원
        4.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engines are recognized as main causes of the air pollution. DI diesel engine is widely used for the sake of minimization on exhaust emission. Because biodiesel fuel is a renewable and alternative fuel for diesel engine, its usability is expanded. The smoke emission of esterfied rapeseed oil is reduced remarkably in comparison with commercial gas oil, that is, it was reduced approximately 44.5% at 1500rpm. But, brake specific energy consumption showed very slight differences. It was concluded that esterfied rapeseed oil can utilize effectively as an alternative and renew-able fuel for diesel engine.
        4,000원
        6.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bio-diesel as fatty acid methyl ester was derived from such oils as soybean, peanut and canola oil by lipase catalyzed continuous trans-esterification. So the activation of lipase(Novozym - 435) was kept to be up to 4:1, the limiting molar ratio of methanol to oil under one-step addition of methanol due to the miscibility of oil and methanol through the static mixer for 4hrs and the elimination of glycerol on the surface of lipase by 7wt% silica gel. Therefore the overall yield of fatty acid methyl ester from soybean oil appeared to be 98% at 50·C of reaction temperature under two-steps addition of methanol with 2×2:1 of methanol to oil molar ratio at an interval of 5.5hrs, 7wt% of lipase, 24 number of mixer elements, 0.2ml/min of flow rate and 7wt% of silica gel.
        4,000원
        7.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        Due to the increasing sewage sludge generation from wastewater treatment facilities, sewage sludge has been reconsidered as a renewable energy source in various ways. Lipid extraction from sewage sludge is an applicable method for biodiesel production. Higher biodiesel production yields can be achieved through the improvement of lipid recovery efficiency. Although sewage sludge has different features due to its types and steps in treatment plants, lipid content of sewage sludge generally ranges from 10 to 15%. Among solvent extraction methods, the highest lipid recovery efficiencies were observed for chloroform-methanol extraction: 13.6-14.6% for primary sludge, 10.6-12.1% for waste-activated sludge, and 2.9-4.2% for digested sludge. The extraction residue of sludge can be used as biosolid refuse fuel (bio-SRF). After lipid extraction, the residue had decreased volatile matter and carbon content. Consequently, the calorific value of the residue decreased by 3,000 kcal/kg. The level of calorific value can be available to use bio-SRF.
        8.
        2015.11 서비스 종료(열람 제한)
        Subcritical hydrolysis followed by methyl estrification was used to produce bio-diesel from low valued waste cooking oil at mild reaction conditions in this study. More than 90% fatty acid methyl esther (FAME) conversion was achieved by subcritical hydrolysis without using catalysts at 275℃ for 45 minutes. The highest conversion to linoleic acid (C18:2) was obtained at this condition. The higher content of free fatty acid (FFA) in waste cooking oil resulted in higher conversion to FAME. It was also observed more prominent at high temperature due to auto catalytic behavior of FFA. FAME yield found about 92% without using catalyst; whereas 98% yield was obtained using 80% TiO2 loading S-TiO2/MCM-41 catalyst at 220℃ and 20 minutes. The amount of FAME increased may be due to trans-esterification of un-reacted TG, DG, and MG with methanol remained during the hydrolysis stage. The higher FAME conversion means the better quality bio-diesel.
        9.
        2013.11 서비스 종료(열람 제한)
        Ce(1-x)Zr(x)O2 catalysts were investigated for bio-diesel production from oleic acid using catalytic deoxygenation. In this study, deoxygenation reaction has been carried out at 300 oC under 1 bar of 20% H2/N2 pressure in batch mode. Ce(1-x)Zr(x)O2 catalysts were prepared by co-precipitation method. Ce0.6Zr0.4O2 catalyst showed the highest oleic acid conversion and C9~C17 selectivity. It has been found that the deoxygenation reaction depends strongly on the reduction property and depends partly on the crystallite size of Ce(1-x)Zr(x)O2. Thus, Ce0.6Zr0.4O2 can be selected as the most promising catalyst for deoxygenation reaction.
        10.
        2004.12 KCI 등재 서비스 종료(열람 제한)
        Bio sparging experiments were conducted in a laboratory column to investigate the potential removal of diesel contaminated groundwater. The objectives in this study were (a) to determine the extent of diesel degradation in laboratory columns under supplement of nutrient; (b) to determine the effect of variation of air flow in the removal of diesel and (c) to evaluate the potential enhancement of diesel degradation as a function of temperature. Our results showed that the nutrient supplement and higher air flow greatly enhanced diesel degradation. However, the variation of water temperature examined slightly increased degradation rate of diesel fuel.