검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Evaporative emissions, a major cause of air pollution, are primarily produced by automobiles and can be recovered using adsorbents. This study investigated the effect of the textural properties of polyimide (PI)-based activated carbon fibers (PIACFs) on the adsorption and desorption performance of n-butane, which are a type of evaporative emissions. PI-ACFs were prepared by varying the activation time while maintaining the identical crosslinking and carbonization conditions. The surface morphology and microstructural properties of the ACFs were examined using a field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD), respectively. The textural properties of ACF (specific surface area, pore volume, and pore size distribution) were analyzed using N2/ 77 K adsorption and desorption isotherm curves. The n-butane adsorption and desorption performance were evaluated according to modified ASTM D5228. From the results, the specific surface area and total pore volume of ACFs were determined to be 680–1480 m2/ g and 0.28–1.37 cm3/ g, respectively. Butane activity (BA) of the ACFs increased from 14.1% to 37.1% as the activation time increased, and especially it was found to have highly correlated with pore volume in the 1.5–4.0 nm range.
        4,000원
        2.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the correlation between the pore characteristics of activated carbon (AC) and the adsorption/desorption characteristics of evaporated fuel was studied. AC was prepared by various physical re-activation methods using coconut-derived commercial AC. Pore characteristics of the re-activated AC were investigated using N2/ 77 K adsorption isotherms. The structural characteristics of the AC were observed by X-ray diffraction and Raman spectroscopy. The butane working capacity was observed according to ASTM D5228. From the results, the specific surface area and total pore volume of the ACs were determined to be 1380–2040 m2/g and 0.60–0.96 cm3/g, respectively. It was also observed that various pore size distributions were found to be dependent on the functions of the activation method and time. A close relationship between butane activity/ retentivity and micropore/mesopore volumes was found. In addition, it was inferred that the volume fraction of micropores and sub-mesopores with diameters between 1.5 and 3.0 nm primarily controls butane activity.
        4,000원