검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Abstract In this study, micro-defects on/in carbon fibers were modified by irradiation with an electron beam, which improved the mechanical strength of single carbon fibers. The electron beam irradiation was 10 kGy (using a 1.5 MeV accelerator in the air). The total doses ranged from 100 to 500 kGy. The tensile strength of the single carbon fiber was measured using a universal testing machine. The micro-defects on the fiber surface were observed with scanning electron microscopy and atomic force microscopy, and those in the fiber were evaluated by Raman spectroscopy. In conclusion, the electron beam treatment produced changes in the micro-defects on/in the carbon fibers, resulting in up to 14% improvement in the tensile strength of single carbon fiber.
        4,500원
        2.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the correlation between the pore characteristics of activated carbon (AC) and the adsorption/desorption characteristics of evaporated fuel was studied. AC was prepared by various physical re-activation methods using coconut-derived commercial AC. Pore characteristics of the re-activated AC were investigated using N2/ 77 K adsorption isotherms. The structural characteristics of the AC were observed by X-ray diffraction and Raman spectroscopy. The butane working capacity was observed according to ASTM D5228. From the results, the specific surface area and total pore volume of the ACs were determined to be 1380–2040 m2/g and 0.60–0.96 cm3/g, respectively. It was also observed that various pore size distributions were found to be dependent on the functions of the activation method and time. A close relationship between butane activity/ retentivity and micropore/mesopore volumes was found. In addition, it was inferred that the volume fraction of micropores and sub-mesopores with diameters between 1.5 and 3.0 nm primarily controls butane activity.
        4,000원
        3.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we prepared ACFs with a high specific surface area from various precursors (rayon, pitch, and oxidized polyacrylonitrile-based fibers) by a steam-activation technique and investigated the effects of the micropore and mesopore fraction on 2-CEES adsorption behaviors. The activation time was precisely controlled so that the activation yield was in the range of 35–40% to ensure the mechanical properties of the ACFs. The N2 adsorption isotherm characteristics at 77K were confirmed by Brunauer–Emmett–Teller, Barrett–Joyner–Halenda and non-local density functional theory equations. The adsorption capacities of the ACF were measured by breakthrough experiments in the gas phase (750 μg/mL of 2-CEES in N2 flow). The removal efficiency of the ACFs was evaluated and compared with that of AC. From the results, specific surface areas and total pore volume of the ACF were determined to be 1380–1670 m2/g and 0.61–0.82 cm3/g, respectively. It was also observed that various pore characteristics of ACF were found to be dependent on crystallite structure of each precursor. The break through time (C/C0 = 0.10) was in the order of Oxi-Pan-H-9-2 < Saratoga AC < Rayon-H-9-3 < Pitch-H-9-4. This indicates that 2-CEES adsorption capacity could be a function not only of specific surface area or total pore volume, but also of sub-mesopore volume fraction in the range of 1.5–2.5 nm of adsorbents.
        4,000원
        4.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, activated carbon with well-developed mesopores was fabricated using kenaf short fibers as a representative biomass. Concentrated phosphoric acid was selected as an activation agent to create highly developed porous structures, and pore development was observed to occur in relation to the weight ratio of phosphoric acid and kenaf. The pore characteristics of the kenaf-based activated carbon were determined using the N2/ 77K adsorption isotherm, and its microcrystalline structure was analyzed using X-ray diffraction. The highest specific surface area (1570 m2/g) was observed when the weight ratio of phosphoric acid to kenaf was 3:1, and the highest mesopore fraction (74%) was observed at 4:1. The carbonization yield was 45–35%, which is higher than that of commercial activated carbon. The production of porous carbon material by this method offers high potential for application because it can be controlled over a wide range of average pore diameter from 2.48 to 5.44 nm.
        4,000원