본 연구에서는 PEBAX 2533에 합성된 PEI-GO@ZIF-8의 함량을 달리 첨가하여 혼합막을 제조하고 N2와 CO2의 투과 특성을 연구하였다. PEBAX/PEI-GO@ZIF-8 혼합막의 N2 투과도는 PEI-GO@ZIF-8 함량이 증가함에 따라 감소하였고, CO2 투과도는 PEI-GO@ZIF-8 함량에 따라 다른 경향을 보였는데 순수 PEBAX 막에서 PEI-GO@ZIF-8 0.1 wt%까지 CO2 투과도는 증가하다가 그 이후의 함량에서는 감소하였다. PEI-GO@ZIF-8 0.1 wt% 혼합막은 CO2 투과도 221.9 Barrer, CO2/N2 선택도는 60.0으로, 제조된 혼합막들 중 CO2 투과도와 CO2/N2 선택도가 향상되어 가장 높은 투과 특성을 보였고 Robeson upper-bound에 도달하는 결과를 얻었다. 이는 충진물이 PEBAX 내에 고루 분산되면서 CO2와 친화적인 상호작용을 하는 GO의 -COOH, -O-, -OH 작용기와 PEI에 결합된 아민기 그리고 CO2에 대해 gate-opening 현상이 일어나는 ZIF-8의 영 향 때문이다.
본 연구에서는 순수 PEBAX® 분리막의 투과특성을 향상시키기 위해 개질된 fumed silica 나노입자를 혼합한 MMMs (mixed matrix membranes) 타입의 PEBAX®/fumed silica 하이브리드 분리막을 제조하고, 이산화탄소와 메탄의 투과 특성을 측정하였다. PEBAX®-1657/TS-530 하이브리드 소재의 경우, FT-IR과 XRD 분석을 통해 PEBAX® 고분자에 무기입자 가 비교적 잘 분산되었음을 확인하였다. 기체투과특성 측정 결과 TS-530을 10 wt% 혼합한 분리막의 경우, 순수 PEBAX® 분 리막과 비교하여 투과도 계수는 약간 감소하나 이상분리인자는 약간 증가하였다. 이는 비투과성 silica 입자의 도입에 따라 기 체 확산 경로가 줄어들고, 경로의 비틀림이 증가하기 때문으로 볼 수 있다. TS-530 함량이 증가함에 따라서는 투과도 계수와 이상분리인자 간에 전형적인 trade-off 경향을 보였다. 이는 TS-530 함량이 증가함에 따라 결정성이 감소하고, 고분자 사슬 간 충전 억제에 따라 자유부피가 증가하기 때문으로 볼 수 있다. 또한 무기입자 함량 증가에 나노간극의 형성 가능성이 높아지 고, 이에 따라 기체 확산도가 커지기 때문으로 판단된다.