검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        1.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Among the products of the electrocatalytic reduction of carbon dioxide (CO2RR), CO is currently the most valuable product for industrial applications. However, poor stability is a significant obstacle to CO2RR. Therefore, we synthesized a series of bimetallic organic framework materials containing different ratios of tungsten to copper using a hydrothermal method and used them as precursors. The precursors were then subjected to pyrolysis at 800 °C under argon gas, and the M-N bimetallic sites were formed after 2 h. Loose porous structures favorable for electrocatalytic reactions were finally obtained. The material could operate at lower reduction potentials than existing catalysts and obtained higher Faraday efficiencies than comparable catalysts. Of these, the current density of WCu-C/N (W:Cu = 3:1) could be stabilized at 7.9 mA ‧ cm-2 and the FE of CO reached 94 % at a hydrogen electrode potential of -0.6 V (V vs. RHE). The novel materials made with a two-step process helped to improve the stability and selectivity of the electrocatalytic reduction of CO2 to CO, which will help to promote the commercial application of this technology.
        4,500원
        2.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        CO2 photocatalytic reduction is a carbon–neutral renewable energy technology. However, this technology is restricted by the low utilization of photocatalytic electrons. Therefore, to improve the separation efficiency of photogenerated carriers and enhance the performance of CO2 photocatalytic reduction. In this paper, g-C3N4/Pd composite with Schottky junction was synthesized by using g-C3N4, a two-dimensional material with unique interfacial effect, as the substrate material in combination with the co-catalyst Pd. The composite of Pd and g-C3N4 was tested to have a strong localized surface plasmon resonance effect (LSPR), which decreased the reaction barriers and improved the electron utilization. The combination of reduced graphene oxide (rGO) created a π–π conjugation effect at the g-C3N4 interface, which shortened the electron migration path and further improved the thermal electron transfer and utilization efficiency. The results show that the g-C3N4/ rGO/Pd (CRP) exhibits the best performance for photocatalytic reduction of CO2, with the yields of 13.57 μmol g− 1 and 2.73 μmol g− 1 for CO and CH4, respectively. Using the in situ infrared test to elucidate the intermediates and the mechanism of g-C3N4/rGO/Pd (CRP) photocatalytic CO2 reduction. This paper provides a new insight into the interface design of photocatalytic materials and the application of co-catalysts.
        4,300원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Semiconductor-based photocatalytic carbon dioxide ( CO2) reduction is of great scientific importance in the field of alleviating global warming and energy crisis. Surface amine modification and cocatalyst loading on the catalyst surface could improve CO2 adsorption capacity and photogenerated charge separation. Herein, amine-modified brookite–TiO2 ( NH2–B–TiO2) coupled metal species (Cu, Ag, Ni(OH)2) cocatalysts have been successfully synthesized by chemical reduction method. The photocatalytic CO2 reduction results show that the CH4 production rates of NH2– B–TiO2/Cu, NH2– B–TiO2/Ag, and NH2– B–TiO2/Ni(OH)2 are 3.2, 12.5, and 1.7 times that of NH2– B–TiO2 (0.74 μmmol g− 1 h− 1), respectively. Results show the introduction of metal species on the surface of the catalyst enhances the absorption range of sunlight and the photogenerated carrier separation efficiency, resulting in enhancing the performance of photocatalytic CO2 reduction. This work provides a strategy for designing metal species-loaded amine-modified brookite–TiO2 by surface/interface regulation to improve photocatalytic efficiency.
        4,200원
        4.
        2023.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrochemical reduction of carbon dioxide (CO2) to value-added products is a remarkable approach for mitigating CO2 emissions caused by the excessive consumption of fossil fuels. However, achieving the electrocatalytic reduction of CO2 still faces some bottlenecks, including the large overpotential, undesirable selectivity, and slow electron transfer kinetics. Various electrocatalysts including metals, metals oxides, alloys, and single-atom catalysts have been widely researched to suppress HER performance, reduce overpotential and enhance the selectivity of CO2RR over the last few decades. Among them, single-atom catalysts (SACs) have attracted a great deal of interest because of their advantages over traditional electrocatalysts such as maximized atomic utilization, tunable coordination environments and unique electronic structures. Herein, we discuss the mechanisms involved in the electroreduction of CO2 to carbon monoxide (CO) and the fundamental concepts related to electrocatalysis. Then, we present an overview of recent advances in the design of high-performance noble and non-noble singleatom catalysts for the CO2 reduction reaction.
        5,200원
        5.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The conversion of CO2 into solar fuels by photocatalysis is a promising way to deal with the energy crisis and the greenhouse effect. The introduction of oxygen vacancy into semiconductor has been proved to be an effective strategy for enhancing CO2 photoreduction performance. Herein, TiO2- x nanostructures have been prepared by a simple solvothermal method and engineered by the reaction time. With the prolonging of reaction time, the oxygen vacancy signal gradually increases while the band gap becomes narrow for the as-synthesized TiO2- x nanostructures. The results show that the TiO2- x-6 h, TiO2- x-24 h, and TiO2- x-48 h samples have the main product of CH4 (more) and CO (less) for CO2 photoreduction. Among the three oxygen vacancy photocatalysts, the TiO2- x-24 h sample shows the highest CH4 generation rate of 41.8 μmol g− 1 h− 1. On the basis of photo/electrochemical measurements, the TiO2- x-24 h sample exhibits efficient electron–hole separation and charge transfer capabilities, thus allows much more electrons to participate in the reaction and finally promotes the photocatalytic CO2 reduction reaction. It further confirms that the optimization of oxygen vacancy concentration could facilitate the photoinduced charge separation and accordingly improve photocatalytic CO2 conversion.
        4,000원
        6.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Reducing CO2 into high value fuels and chemicals is considered a great challenge in the 21st century. Efficiently activating CO2 will lead to an important way to utilize it as a resource. This article reviews the latest progress of g-C3N4 based catalysts for CO2 reduction. The different synthetic methods of g-C3N4 are briefly discussed. Article mainly introduces methods of g-C3N4 shape control, element doping, and use of oxide compounds to modify g-C3N4. Modified g-C3N4 has more reactive sites, which can significantly reduce the probability of photogenerated electron hole recombination and improve the performance of photocatalytic CO2 reduction. Considering the literature, the hydrothermal method is widely used because of its simple equipment and process and easy control of reaction conditions. It is foreseeable that hydrothermal technology will continue to innovate and usher in a new period of development. Finally, the prospect of a future reduction of CO2 by g-C3N4-based catalysts is predicted.
        4,000원
        10.
        2018.05 구독 인증기관·개인회원 무료
        이산화탄소 전환 기술은 이산화탄소를 원료로 유용한 화합물을 생산하는 기술로서 지속적인 탄소원의 활용 및 고부가 가치의 화합물 생산을 통한 이익 창출이 가능하다. 다양한 이산화탄소 전환 기술 중에서도 전기 에너지를 이용한 이산화탄소 전환 기술은 유용 화합물 생산 외에도 신재생에너지 저장 기술로 활용할 수 있어서 최근 그 중요성이 부각되고 있다. 그러나 열역학적으로 안정한 이산화탄소의 환원 반응은 많은 에너지를 필요로 하므로 기술의 경제성 확보 및 실질적인 탄소 중립을 구현하기 위해서는 생성물에 대한 높은 선택성을 가지는 촉매 개발 및 효율적인 반응 시스템 개발이 필수적이다. 본 연구에서는 고분자 전해질 막을 이용하여 전기화학적 이산화탄소 전환을 통해 개미산염을 제조하였다.
        11.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 온실가스 감축을 위한 세계 각국의 노력이 다각도로 진행되고 있으며, 국제적인 협력 또한 시급히 요구되고 있다. 이러한 노력의 일환으로 해운 업계에서는 항내에서 유발되는 선박 기인 온실가스 배출량 중 탄소에 대한 배출량 감축과 선박운항 비용 절감을 위한 친환경 항만 체계 구축 방안이 활발히 논의되고 있다. 이 논문에서는 탄소 배출량 감축 및 친환경 항만 체계 구축의 기초 연구로 정박 중인 선박에 자체 생산 전력을 공급하는 대신 육상전력을 공급하는 방안을 모색하였다. 이를 위하여 실제 운항중인 목포해양대학교의 실습선 새누리호를 대상으로 정박 중인 선박이 육상전력을 사용함으로써 얻을 수 있는 환경적 비용적 효과에 관해 고찰하였다. 연구 결과 육상전력을 사용한 경우에 CO2 배출량은 약 32.5%가 감소되었고, 운항비용은 약 33%가 절감된 것으로 나타났다.
        4,000원
        12.
        2017.04 KCI 등재 서비스 종료(열람 제한)
        Green Infrastructure (GI) approach provides significant benefits to cities and communities. GI applications would provide multi-benefits such as the reduction in building energy demand, stormwater management, urban heat island reduction, habitat creation, etc. GI is nowadays considered as a multi-benefit best management practice (BMP) at diverse levels of government. The purpose of this study is to find out the positive effects of GI application, and Geographic Information System (GIS) is used for the accurate and efficient analysis. Two polygon data, ‘GreenRoof’ and ‘ParkingPlace’ are produced with a satellite imagery extracted from Google Earth Pro. These data are used to calculate total available spaces for green roof and permeable pavement in the campus of Chungbuk National University. After GI application in the campus, 13.2% of landcover is converted to green spaces and this change results in expanding the green network of Cheongju city. The result of this study shows that green roof application can absorb 4576.95 kg/yr of Carbon Dioxide and possibly reduce maximum 1,497,600L urban runoff. This study proves how GI is valuable for the city environment with quantitative analyses.
        13.
        2016.01 KCI 등재 서비스 종료(열람 제한)
        These days, the development of various pre- and post-combustion techniques has been pursued in order to reduce the emission of CO2 in the fleet of coal-fired power plants, since it is of great importance to each country’s energy production while also being the single largest emitter of CO2. As part of this kind of research efforts, in this study, a novel burning method is tried by the co-burning of the pulverized coal with the stoichiometric mixture of the hydrogen and oxygen (H2+1/2O2) called as HHO. For the investigation of this idea, the commercial computational code (STAR-CCM+) was used to perform a series of calculation for the IFRF (International Flame Research Foundation) coal-fired boiler (Michel and Payne, 1980). In order to verify the code performance, first of all, the experimental data of IFRF has been successfully compared with the calculation data. Further, the calculated data employed with pure coal are compared with the co-burning case for the evaluation of the substituted HHO performance. The reduced amount of coal feeding was fixed to be 30% and the added amount of HHO to produce a similar flame temperature with pure coal combustion was considered as 100% case of HHO addition. This value varies from 100 to 90, 80, 60, 50, 0% in order to see the effect of HHO amount on the performance of pulverized coal-fired combustion with the 30% reduced coal feeding. One of the most important thing found in this study is that the 100% addition of HHO amount shows approximately the same flame shape and temperature with the case of 100% coal combustion, even if the magnitude of the flow velocity differs significantly due to the reduced amount of air oxidizer. This suggests the high possibility of the replacement of the coal fuel with HHO in order to reduce the CO2 emission in pulverized coal-fired power plant. However, an extensive parametric study will be needed in near future, in terms of the reduction amount of coal and HHO addition in order to evaluate the possibility of the HHO replacement for coal in pulverized coal-fired combustion.
        14.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        Carbon dioxide generated from construction materials and construction material industry among the fields ofconstruction is approximately 67 million tons. It is about 30% of the carbon dioxide generated in the fields of construction.In order to reduce carbon dioxide in the fields of construction, it is necessary to control the use of fossil fuel consumedand decrease carbon emission by reducing the secondary and tertiary curing generating carbon dioxide in constructionmaterial industry. Therefore, this study manufactured mortar by having cement as the base and substituting three bindingmaterials up to 50% and then adopted different curing methods to analyze congelation and strength characteristics. According to the result of strength characteristics by the types of binding materials and replacement ratio, the specimensubstituting ESA (Early Strength Admixture) and FPC (Fine Particle Cement) showed active strength improvement. Inparticular, the specimen substituting ESA as 25% indicated the greatest strength improvement, and as the number of curingincreased, the strength grew higher, too. And when the binding material was used by substitution, it showed strengthcharacteristics similar to or higher than the specimen conducting tertiary autoclave curing as the secondary steam curing.
        15.
        2013.11 서비스 종료(열람 제한)
        In order to make the best biogas production in the anaerobic fermentation, it is important to be able to compare the raw input materials on the basis of their sustainability, which may include a variety of environmental indicators. This study examined the comparative sustainability of renewable technologies in terms of their life cycle CO2 emissions and embodied energy, using life cycle analysis. The comparative results showed that power generation of bioenergy was associated with 0.96 kWh/m³ biogas and the reduction of CO2 emission is 2.1kg of CO2/kg Biomass. Other environmental indicators should be applied to gain a complete picture of the technologies studied. The generation of electricity is 2.07 kWh/m³ biogas in comparison with theoretical results of 3.09 kWh/m³ (efficiency of generator is 30%) based on the assumption of the removal efficiency 95% of CO2, methane conversion 100%, efficiency of generator 30%. Final results are the production of methane: 250 m³/day, production of electricity: 770kWh/day when used 5m³/day of waste.
        16.
        2013.04 서비스 종료(열람 제한)
        In this study, the usage of cement amount is minimized to reduce CO2 emission and toxic effect to users for concrete mix design. The reduction of cement is achieved using quad-type admixture (GGBS, FA, Cement, Hwangtoh powder)used for concrete mix design. In order to apply the mix performed design to construction usage, material tests such as compressive strength, slump and pH tests are Preliminary experiment results showed that, the quad-type concrete showed feasibility of being used as a healthy and CO2 reducing construction material