검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 126

        23.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, carbon nanotubes(CNT) and graphene nanoplates(GnP) are deposited on the surface of carbon fibers(CF) at once. Investigating the effect between CNT and GnP on increasing the interfacial and mechanical properties of carbon fiber reinforced epoxy composites(CFRP). The cross section of the CFRP composites indicates that the GnPs/CNTs hybrid coating exhibits significantly higher mechanical performance in all coating samples. The interlayer shear strength of the GnPs/CNT hybrid coated CFRP composite was 90% higher than that of the uncoated CF composite. The flexural and tensile strength of CFRP composites using GnPs /CNT hybrid coatings were improved by 52% and 70%, respectively, compared to uncoated CF.
        4,000원
        24.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현대에 사용되는 콘크리트는 혼화재료 적용을 통하여 워커빌리티와 구조적 성능을 향상시킬 수 있고 극한 환경에서 적용 가능한 기능성 콘크리트로 개발되었으나 외부 요인에 의한 부식, 인장력에 취약한 구조적 한계는 콘크리트의 활용 범위를 제한하였다. 이러한 콘크리트의 단점을 해결하는 방안으로 신소재로써 각광받고 있으며 고유의 기능을 부여할 수 있는 Smart material을 활용하고자 하며 Smart material 중 하나인 탄소나노튜브는 콘크리트의 보강재 중 하나인 철근보다 더 뛰어난 역학적 성능을 보이므로 콘크리트 내 적용을 통해 콘크리트의 향상된 구조성능을 기대할 수 있다. 또 다른 Smart material중 하나인 자기치유 혼화재는 콘크리트 균열면의 앙금 반응을 통해 균열을 메움으로써 콘크리트의 균열 부분 및 내부 배근재의 부식을 최소화하고자 한다. 탄소나노튜브는 시멘트 질량의 0.1, 0.3, 0.5%, 자기치유 콘크리트는 시멘트 질량의 6, 8, 10%만큼 혼입된 콘크리트 복합체의 역학적 거동을 검토하기 위해서 압축강도 시험과 휨시험을 수행하였으며 휨시험이 종료된 시편을 수중에 넣어 0,3,7,14,21,28,56,84일간 자기치유 성능을 검토하였다. 휨시험의 경우 OPC시편과 비교하여 동일 변위에 대해 높은 하중 변화를 보였으나 취성도가 증가하였다. 자기치유 실험의 경우 탄소나노튜브의 경우 일반 OPC 시편보다 약간 향상된 자기치유 성능을 보였으나 혼입량 증가에 따른 경향성을 보이지 못하였다. 자기치유 혼화재의 경우 OPC 또는 탄소나노튜브 혼입 콘크리트보다 초기 속도면에서 느린 회복률을 보였으나 최종 회복률에서 더 우수한 결과를 보였으며 이러한 현상은 혼입율의 증가에 따라 해당 경향이 더 뚜렷히 보였다.
        4,500원
        25.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Although flame synthesis promises economic benefit and rapid synthesis of carbon nanotube (CNT), the lack of control and understanding of the effects of flame parameters (e.g., temperature and precursor composition) impose some challenges in modelling and identifying CNT growth region for obtaining better throughput. The present study presents an investigation on the types of carbon precursor that affect CNT growth region on nickel catalyst particles in an ethylene inverse diffusion flame. An established CNT growth rate model that describes physical growth of CNT is utilised to predict CNT length and growth region using empirical inputs of flame temperature and species composition from the literature. Two variations of the model are employed to determine the dominant precursor for CNT growth which are the constant adsorption activation energy (CAAE) model and the varying adsorption activation energy (VAAE) model. The carbon precursors investigated include ethylene, acetylene, and carbon monoxide as base precursors and all possible combinations of the base precursors. In the CAAE model, the activation energy for adsorption of carbon precursor species on catalyst surface E a,1 is held constant whereas in the VAAE model, E a,1 is varied based on the investigated precursor. The sensitivity of the growth rate model is demonstrated by comparing the shifting of predicted growth regions between the CAAE model and the VAAE model where the CAAE model serves as a control case. Midpoint-based and threshold-based techniques are employed within each model to quantify the predicted CNT growth region. Growth region prediction based on the midpoint-VAAE approach demonstrates the importance of acetylene and carbon monoxide to some extent towards CNT growth. Ultimately, the threshold-VAAE model shows that the dominant precursor for CNT growth is the mixture of acetylene and carbon monoxide. A simplified reaction mechanism is proposed to describe the surface chemistry for precursor reactions with nickel catalyst where decomposition of the ethylene fuel source into acetylene and carbon monoxide is accounted for by chemisorption.
        4,200원
        26.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We reported the synthesis of dendrite-like carbon nanotube-confined polymeric sulfur composite by modifying the surface of carbon nanotubes (CNTs) with trithiocyanuric acid (TTCA) and then copolymerizing with sulfur. DSC results show the successfully formation of robust chemical bonds between sulfur and TTCA modified CNTs, which effectively avoid the dissolution of polysulfide when used as cathodes for lithium–sulfur batteries. The composite with a high sulfur content of 78 wt% exhibits an initial charge capacity of 698 mAh g− 1 and the residual capacity of 553 mAh g− 1 after 1000 cycles at a rate of 1 C.
        4,000원
        27.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbonaceous materials are considered as potential adsorbents for organic dyes due to their unique structures which provide high aspect ratios, hydrophobic property, large efficient surface area, and easy surface modification. In this work, graphene nanoribbons (GNRs) were prepared by atomic hydrogen-induced treatment of single-walled carbon nanotube (SWCNTs), which inspire the idea of cutting and unzipping the SWCNTs carpets with the modified in molecules prevent because of the unfolding of the side-walls. The unfolded spaces and uniform vertical arrangement not only enhance the active surface area, but also promote the electrostatic and π–π interactions between dyes and GNRs. The improved adsorption capacity of GNRs beyond original SWCNTs can be determined by the adsorption kinetics and isotherm, which are evaluated through adsorption batch experiments of the typical cationic methylene blue (MB) and anionic orange II (OII) dye, respectively. It is shown that the adsorption kinetics follow a pseudo second-order model while the adsorption isotherm could be determined by Langmuir model. The results reveal that the maximum adsorption capacities of GNRs for MB and OII are 280 and 265 mg/g, respectively. The GNRs present the highly efficient, cost effective, and environmental friendly properties for the commercial applications of wastewater treatment.
        4,000원
        28.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Single C-vacancy and pyridine-like N3 defect are usually formed on the single-walled carbon nanotube (SWCNT) and they have unique properties for potential applications. In this paper, we use density functional theory to investigate the discrepancies of such two structures from the geometric and electronic aspects. Our results indicate that the existed single vacancy in the SWCNT can lead to somewhat electron localization because of the lone pair electrons; while the N3 embedded SWCNT ( N3-SWCNT) has stronger chemical reactivity and electron localization than the single vacancy SWCNT (SV-SWCNT) due to the great charge transfer between N3 group and C atom on the tube sidewall. Through the investigation of Ag-doping on the above two nano-structures, we found that the single Ag atom is much more stably adsorbed on the N3- SWCNT sidewall compared with SV-SWCNT, forming higher binding energy and higher electron transfer. Our calculation would shed light on the physicochemical property of SWCNT-based material and thus extend their potential applications in many fields.
        4,000원
        29.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mechanically enhanced supramolecular carbon nanotube (CNT) films were prepared in water by employing the π-electronrich phenyl, naphthalenyl, and pyrenyl end-functionalized polyethylene oxides (PEOs) as supramolecular linkers, followed by vacuum filtration. Among them, the supramolecular CNT film produced by the pyrenyl end-functionalized PEO (PEOPy) exhibited the highest mechanical strength, which was ~ 1.5–2 times higher than that of the CNT films produced using the typical dispersant, Triton X-100, although the functionality of PEO-Py was lower than that prepared using other linkers, and the content of PEO-Py in the CNT films was lower than that obtained using Triton X-100. Fluorescence and UV–Vis spectroscopy demonstrated that the improved mechanical properties of the supramolecular CNT film result from the formation of π–π interactions between the CNT and the pyrene moieties of the PEO-Py linker. Finally, the supramolecular CNT film exhibited a 40–50 dB electromagnetic shielding efficiency through hybridization with silver nanowires.
        4,000원
        30.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composites of carbon nanotube (CNT) supported by Sn-doped MnO2 with enhanced capacitance have been fabricated with varying dopant concentrations. The composites have been subjected to physiochemical, configurational, and morphological analyses by FTIR, UV–Vis spectroscopy, X-ray diffraction and field emission scanning electron microscopy, high resolution transmission electron microscopy and selected area electron diffraction studies. The electrochemical performance of the composite has been evaluated by cyclic voltammetry and charge/discharge techniques. Highest specific capacitances of 940 F g−1 at a current density of 0.35 A g−1 and 927 F g−1 at 5 mV s−1 in 1 M Na2SO4 electrolyte solution was achieved in the case of 5% Sn doped composite. Moreover, the electrode demonstrated good cycling performance and retaining 79.7% of the initial capacitance over 3000 cycles. The superior electrochemical performance is accredited mainly to the porous sheath hierarchical architecture, which consist of inter connected MnO2 nanoneedles uniformly coated over the CNT surface. This peculiar architecture is responsible for fast ion/electron transfer and easy access of the active material.
        4,200원
        31.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effects of multi-walled carbon nanotube (MWCNT) type and flow type (shear and elongational flow) on the electrical conductivity of polycarbonate (PC)/MWCNT nanocomposites were investigated. Two different MWCNTs produced a huge difference in electrical conductivity in an injection molded PC/MWCNT nanocomposite. It was observed that MWCNTs having a higher aspect ratio provide much lower electrical conductivity in injection molded PC/MWCNT nanocomposites while the conductivities of compression molded samples from two different MWCNTs were the same. We found that this is due to a difference in the deformability of the two MWCNTs. Nanocomposite samples prepared at a higher extensional rate and shear rate showed lower electrical conductivity. This is attributed to flow induced orientation of the MWCNTs. The experimental results were discussed in relation to variation in the tube–tube contact due to the change of the MWCNT orientation.
        4,000원
        32.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        탄소나노튜브(CNT) 기반의 멤브레인은 높은 물 전달률과 직경에 따른 이온 배제율로 해수담수, 물질 정화 등을 위한 분리막으로써의 가능성을 보여 주었다. 이온 선택성은 CNT 기반 멤브레인의 응용 분야를 확대하기 위한 중요한 요소이며, 기능기를 이용하여 이온 선택성의 조절이 가능함이 보고되었다. 다양한 원자가/크기의 이온이 혼합될 경우, 이온-기능기간 작용력 뿐만 아니라 이온-이온간의 작용력, 이온의 크기에 의한 반발력 등이 복합적으로 작용한다. 이에 본 연구에서는 분자동역학 전산모사를 통하여, 상이한 원자가/크기를 가진 이온의 혼합이 기능화된 CNT의 이온 선택성에 미치는 영향을 연구 하였다. Potential of Mean Force 계산을 통하여 이온 투과에 대한 자유 에너지 장벽을 계산하였으며, CNT 크기 변화, 전하량 변화를 통하여 이온 선택성과 배제에 영향을 미치는 요소를 분석하였다. 본 연구는 CNT 멤브레인을 이용한 분리막 설계, 생체 이온 전달 채널 모사 등에 유용할 것으로 기대한다.
        4,000원
        33.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 탄소나노튜브/화이버/폴리머 복합소재 구조에 대한 재료 물성 및 강성 추정을 다룬다. 수정된 Halpin-Tsai 모델을 적용한 멀티 스케일 해석은 탄소나노튜브의 함유량 비율, CNT 두께-길이 비율, 화이버 부피 함유량, 그리고 화이버 보강각도 변화에 따라서 수행되었다. 본 연구에서 제시한 멀티-스케일 접근방법은 기존 모델을 적용하여 얻은 결과와 비교하여 검증하였다. 매개변수 해석을 통하여 CNT의 적절한 함유량은 적층된 CNTFPC 구조의 구조성능의 향상시킬 수 있는 중요한 특성을 규명하였다.
        4,000원
        34.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A conductive additive is prepared by dispersing multi-walled carbon nanotubes (MWCNTs) on Cu powder by mechanical milling and is distributed in epoxy to enhance its electrical conductivity. During milling, the MWCNTs are dispersed and partially embedded on the surface of the Cu powder to provide electrically conductive pathways within the epoxy-based composite. The degree of dispersion of the MWCNTs is controlled by varying the milling medium and the milling time. The MWCNTs are found to be more homogeneously dispersed when solvents (particularly, non-polar solvent, i.e., NMP) are used. MWCNTs gradually disperse on the surface of Cu powder because of the plastic deformation of the ductile Cu powder. However, long-time milling is found to destroy the molecular structure of MWCNTs, instead of effectively dispersing the MWCNTs more uniformly. Thus, the epoxy composite film fabricated in this study exhibits a higher electrical conductivity than 1.1 S/cm.
        4,000원
        35.
        2018.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nickel oxide(NiO) thin films, nanorods, and carbon nanotube(CNT)/NiO core-shell nanorod structures are fabricated by sputtering Nickel at different deposition time on alumina substrates or single wall carbon nanotube templates followed by oxidation treatments at different temperatures, 400 and 700 oC. Structural analyses are carried out by scanning electron microscopy and x-ray diffraction. NiO thinfilm, nanorod and CNT/NiO core-shell nanorod structurals of the gas sensor structures are tested for detection of H2S gas. The NiO structures exhibit the highest response at 200 oC and high selectivity to H2S among other gases of NO, NH3, H2, CO, etc. The nanorod structures have a higher sensing performance than the thin films and carbon nanotube/NiO core-shell structures. The gold catalyst deposited on NiO nanorods further improve the sensing performance, particularly the recovery kinetics.
        4,000원
        36.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Free-standing electrodes of CuO nanorods in carbon nanotubes (CNTs) are developed by synthesizing porous CuO nanorods throughout CNT webs. The electrochemical performance of the free-standing electrodes is evaluated for their use in flexible lithium ion batteries (LIBs). The electrodes comprising CuO@CNT nanocomposites (NCs) were characterized by charge-discharge testing, cyclic voltammetry, and impedance measurement. These structures are capable of accommodating a high number of lithium ions as well as increasing stability; thus, an increase of capacity in long-term cycling and a good rate capability is achieved. We demonstrate a simple process of fabricating free-standing electrodes of CuO@ CNT NCs that can be utilized in flexible LIBs with high performance in terms of capacity and cycling stability.
        4,000원
        37.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We fabricated a Li-S battery with post-treated carbon nanotube (CNT) films which offered better support for sulfur, and investigated the effect of the surface properties and pore structure of the post-treated CNT films on Li-S battery performance. Post-treatments, i.e., acid treatment, unzip process and cetyltrimethylammonium bromide (CTAB) treatment, effectively modified the surface properties and pore structure of the CNT film. The modified pore structure impacted the ability of the CNT films to accommodate the catholyte, resulting in an increase in initial discharge capacity.
        4,000원
        38.
        2018.05 구독 인증기관·개인회원 무료
        This paper presents a method to deice concrete pavement with carbon nanotube (CNT) so as to avoid the adverse effects of conventional deicing method such as salt on the structure, function and environment. To meet the research objective, laboratory tests were incorporated with finite element method. Laboratory tests conducted with CNT embedded inside the slab to investigate how far the heat transfers on the surface temperature of above 0oC when CNT generates the target temperature of 60oC in the freezer temperature of -10oC. Also, the cases of three different spacing of 15, 20 and 30 cm between CNTs were conducted to determine the maximum allowable spacing of CNT. Along with these experimental tests, heat transferring analysis conducted to validate the test results.
        39.
        2018.05 구독 인증기관·개인회원 무료
        본 연구에서는 해수를 유도용액으로 사용하고 하수처리수를 공급수로 사용하는 정삼투막 공정의 유기/바이오 오염물에 의한 막오염을 저감하기 위해 폴리도파민/탄소 나노 튜브 복합 분리막을 제작하였다. 분리막은 기존 계면중합반응에 탄소 나노 튜브를 첨가하여 초박형 복합 분리막을 제조한 후, 폴리도파민으로 코팅시켜 제조하였다. 제작 된 분리막은 알긴산나트륨(Sodium alginate)용액과 미생물(Pseudomonas aeruginosa PA01) 부착 실험을 통하여 수투과도와 막오염도를 평가하였다. 그 결과, 폴리도파민/탄소 나노 튜브 복합 분리막은 복합되지 않은 분리막에 비하여 높은 수투과도와 낮은 막오염 성능을 보였다.
        1 2 3 4 5