검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        3.
        2017.04 구독 인증기관·개인회원 무료
        RNA interference (RNAi) has been widely adopted as a primary reverse genetic tool to determine the physiological function of genes of interest. Nevertheless, the lack of optimized RNA delivery method has been a major obstacle for non-model organisms, such as Cimex lectularis. In this study, we have established a RNAi protocol for the silencing of C. lectularis salivary gland-specific cholinesterase (SChE) gene based on micro-injection of double stranded RNA (dsRNA). An aliquot (20 nl) of dsRNA solution (4.5 ng/nl) was injected to body cavity through the arthrodial membrane between metathoracic coxa and sternum of adult females. Observed mortality was less than 5% and at 6-day post injection, while the gene silencing efficiency reached 97~99% at 2-6 day post injection. This result demonstrates the efficacy of injection RNAi via the arthrodial membrane in C. lectularius.
        4.
        2014.04 구독 인증기관·개인회원 무료
        The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), is an ectoparasitic pest that feeds on humans as well as other mammals. We investigate that point mutations on the voltage-sensitive sodium channel are associated with the resistance to pyrethroids. Two point mutations (V419L and L925I) in the voltage-sensitive sodium channel (VSSC) α-subunit gene have been identified in deltamethrin-resistant bed bugs. L925I, located the intracellular loop between IIS4 and IIS5, has been previously found in a highly pyrethroid-resistant populations of whitefly. V419L, located in the IS6 transmembrane segment, is a novel mutation. To establish a population-based genotyping method as a molecular resistance monitoring tool, a quantitative sequencing (QS) protocol was developed. Frequency prediction equations were generated from the plots by linear regression, and the signal ratios were shown to highly correlate with resistance allele frequencies (r2 > 0.993). In addition to QS, the filter contact vial bioassay (FCVB) method was established and used to determine the baseline susceptibility and resistance of bed bugs to pyrethroids. A pyrethroid-resistant strain showed > 9375- and 6990-fold resistance to deltamethrin and λ-cyhalothrin, respectively. Resistance allele frequencies in different bed bug populations predicted by QS correlated well with the FCVB results, confirming the roles of the two mutations in pyrethroid resistance. Taken together, employment of QS in conjunction with FCVB method should greatly facilitate the detection and monitoring of pyrethroid resistant bed bugs in the field.
        5.
        2012.05 구독 인증기관·개인회원 무료
        We analyzed molecular and enzymatic properties of three cholinesterases (ChEs; ClAChE1, ClAChE2 and ClSChE) from Cimex lectularius. The ClAChE1 and ClAChE2 were generally present as a membrane-anchored dimeric insoluble form in the brain and ganglia. In the case of ClSChE, monomeric and dimeric soluble forms were observed. To investigate enzymatic properties, three ChEs were functionally expressed using baculovirus expression system. ClAChE1 revealed a significantly higher activity than ClAChE2 to acetylthiocholine iodide (ATChI) substrate. Kinetic analysis using two choline substrates (ATChI and butyrylthiocholine iodide) demonstrated that ClAChE2 had higher catalytic efficiency but lower substrate specificity than ClAChE1. Inhibition assay was conducted by using three inhibitors (BW284C51, eserine, Iso-OMPA) and two insecticides (chlorpyrifos-methyl and carbaryl). Two ClAChEs revealed high sensitivities to BW284C51, eserine, chlorpyrifos-methyl and carbaryl, but were not sensitive to Iso-OMPA. This inhibition profile confirmed that both ClAChEs are categorized as ChEs. Interestingly, the salivary specific cholinesterase did not show any measurable activities to choline substrates, confirming its non-synaptic function in C. lectularius
        6.
        2011.10 구독 인증기관·개인회원 무료
        We identified and characterized the full-length cDNA sequences encoding two acetylcholinesterases (ClAChE1 and ClAChE2) and a salivary gland-specific cholinesterase (ClSChE) from the common bed bug, Cimex lectularius. All three cholinesterase genes (Clac1, Clace2 and Clsce) have conserved motifs, including a catalytic triad, a choline binding site and an acyl pocket. Phylogenetic analysis showed that ClAChE1 belongs to the insect AChE1 clade, whereas ClAChE2 belongs to the insect AChE2 clade. ClSChE was grouped into the clade containing all AChE1s, suggesting its paralogous relationship to ClAChE1. Transcription levels of Clace1 were higher than those of Clace2 in all tissues examined, including the central nervous system (CNS). In contrast, the Clsce transcript was not detected in the CNS but specifically found in the salivary gland in much higher levels (>3000 fold) than those of Clace1 and Clace2. Western blot analysis using anti-ClAChE antibodies in conjunction with activity staining revealed that ClAChE1 is more active than ClAChE2 whereas ClSChE has little enzyme activity. Three-dimensional structure modeling suggested that ClAChEs and ClSChE shared structural similarities, but had some differences in the residues forming the acyl pocket and oxyanion hole. The current findings should provide valuable insights into the evolution and functional diversification of insect cholinesterase.
        7.
        2009.10 구독 인증기관·개인회원 무료
        Two point mutations (V419L and L925I) in the voltage-sensitive sodium channel (VSSC) α-subunit gene have been identified in deltamethrin-resistant bedbugs. To predict resistance allele frequencies of sodium channel mutations (V419L and L925I) in bedbugs at a population level, we developed quantitative sequencing (QS) protocol. The signal ratios between resistant and susceptible nucleotides were generated from sequencing chromatogram and plotted against the corresponding resistance allele frequencies. Linear regression coefficients of the plots were close to 1 (r2 = 0.9928 and 0.9998), suggesting that the signal ratios are reliable correlated with the resistance allele frequencies. To enable on-site monitoring of pyrethroid resistance in bed bugs, residual contact vial (RCV) bioassay method was established and used to determine median lethal concentration (LC50) values to deltamethrin for various bed bug strains. Resistance allele frequencies in these bedbug strains predicted by QS were correlated well with the RCV bioassay results, confirming the roles of two mutations in pyrethroid resistance. Taken together, employment of QS in conjunction with RCV bioassay should greatly facilitate resistance monitoring of bedbugs in the field.
        8.
        2009.05 구독 인증기관·개인회원 무료
        The present investigation establishes deltamethrin resistance in the common bed bug, Cimex lectularius, populationcollected from New York City (NY-BB). The mortality resistance ratio indicated that NY-BB population was 264-fold more resistant to 1% deltamethrin in contact bioassay compared to one insecticide- susceptible population collected in Florida (FL-BB). Specific enzyme activities (general esterase, glutathione S-transferase, and 7-ethoxycoumarin O-deethylase) of NY-BB were not statistically different from those of FL-BB, indicating that the metabolic factors are not associated with the deltamethrin resistance in NY-BB. Complementary DNA fragments that encoded the open reading frame of voltage-sensitive sodium channel α-subunit genes from the FL-BB and NY-BB were obtained by homology probing PCR and sequenced. Sequence alignment of the internal and 5’ and 3’ RACE fragments generated a 6500 bp cDNA sequence contig, which was composed of a 6084 bp open reading frame (ORF) encoding 2027 amino acid residues and 186 bp 5’ and 230 bp 3’ untranslated regions (5’ and 3’UTRs, respectively). Sequence comparisons of the complete open reading frames of the sodium channel genes identified two point mutations (V419L and L925I) that were presented only in the NY-BB population. L925I, located the intracellular loop between IIS4 and IIS5, has been previously found in the pyrethroid-resistant populations of whitefly (Bemisia tabaci) that was more than 100-fold resistant to fenpropathrin. V419L, located in the IS6 transmembrane segment, is a novel mutation. This evidence suggests that the two mutations are likely the major resistance-causing mutations in the deltamethrin-resistant NY-BB via a knockdown-type nerve insensitivity mechanism.