검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most of automobile steering parts are manufactured through the multi-stage cold forging process using round-bar drawn materials. The same process is applied to the ball stud parts of the outer ball joint, and various research activities are being carried out to reduce the extreme manufacturing cost in order to survive in the limitless competition. In this paper, we present a quantitative prediction method for the limiting life of the die as a method for cost reduction in the multi-stage cold forging process. The load on the die was minimized by distributing the forming load based on process optimization through finite element analysis. In addition, based on the quantitative prediction algorithm of the limiting life of the die, the application of the split die and the optimization of the phosphate treatment of the material surface are presented as a conclusion as a method to improve the limiting life of the die.
        4,000원
        2.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, as part of the paradigm shift for manufacturing innovation, data from the multi-stage cold forging process was collected and based on this, a big data analysis technique was introduced to examine the possibility of quality prediction. In order for the analysis algorithm to be applied, the data collection infrastructure corresponding to the independent variable affecting the quality was built first. Similarly, an infrastructure for collecting data corresponding to the dependent variable was also built. In addition, a data set was created in the form of an independent variable-dependent variable, and the prediction accuracy of the quality prediction model according to the traditional statistical analysis and the tree-based regression model corresponding to the big data analysis technique was compared and analyzed. Lastly, the necessity of changing the manufacturing environment for the use of big data analysis in the manufacturing process was added.
        4,000원
        3.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The global trend is the application of heat-treated omission materials to reduce the manufacturing cost of automobile steering parts. Attempts have been made to apply heat-treated omission materials in domestic, but they are delayed due to concerns over rising cold forging process costs. For quantitative prediction of cold forging process cost, fatigue properties of forging die materials were evaluated. Based on this, the die life and cost were predicted quantitatively, and the manufacturing cost reduction of automobile steering parts using heat-treated material was found to be about 11%. Also, various methods to improve die life were additionally presented.
        4,000원
        4.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Forged part made of Cold heading quality wire materials are used for automotive brake systems. The cost reduction of forged products is a major issue because of the strict shape change. A series of studies were conducted to minimize the cost of EPB spindle process among brake parts. In order to reduce the material cost, heat treatment-abbreviated material was applied and the formability on the processes was verified by the ductile fracture theory. In addition, the causes of shape fixation and die life degradation were analyzed using the numerical simulation. The process cost has been minimized by re-designing process, changing the product shape, and the die material.
        4,000원
        5.
        2016.10 구독 인증기관 무료, 개인회원 유료
        The objective of this work is to investigate the A-IMS structural defects on the tubular shaft and solid shaft by analyzing the under-fill, metal flow, effective stress and load characteristics. The tubular shaft and solid shaft were designed 6 stage process by upper and lower die. The results were analysed by using a finite elements analysis method. The coefficient of frictions were set Oil_Cold conditions as referred to the analysis library. It was found that the actual under-fill phenomenon was not observed in both tubular and solid shaft. The load values of tubular and solid shaft were 520ton and 255ton, respectively. These values were under the limit of forging machine maximum value.
        4,000원
        6.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to investigate the optimal design on the tubular shaft and solid shaft for A-IMS of commercial vehicle. The tubular shaft and the solid shaft were designed by 6 stage processes and the results were analyzed by using a finite element analysis method. The coefficient of friction was set to Oil_Cold conditions as referred to the analysis library. It was found that the actual underfill phenomenon was not observed on the tubular shaft and solid shaft. The metal flow of the tubular shaft and solid shaft revealed that the folding phenomenon was not occurred, so there is no problem in actual production. Principal stress and load characteristics of tubular shaft were higher than those of solid shaft since the tubular shaft has many deformation from stage 1 to stage 3.
        4,000원
        7.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of upper die type on the load characteristics of lower die and the wasted material was studied numerically. The different shapes(A-type, B-type, and C-type) of upper die were applied. Also finite element analysis method was applied for the analysis in each stage. The half of X, Y plane was analyzed due to the symmetrical shape in order to reduce the analysis time and be accurate results. The coefficient of friction was set to oil_cold conditions as refer to the system library. It was revealed that principal stress was the order in A, C, and B. A and B type have the highest value in 4 stage, and C type shows the highest value in 3 stage. In addition, Von mises stress were higher in order A, B, and C. A and B type have the highest in 4 stage, and C type shows to have about the same value in the 2 - 5 stage. The load was generally higher than C type. The load of C type was reduced in YY-direction at each stage without 2, 5, 6 stage.
        3,000원
        8.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of upper die type on the load characteristics of lower die and the wasted material was studied numerically. The open and closed types of upper die were applied for each stage and the results are analyzed using a finite element analysis method. The half of x,y plane was analyzed due to the symmetrical shape in order to reduce the analysis time. The coefficient of friction was set to Soap_Cold conditions as refer to the analysis library. It was revealed that a lot of underfill portion was observed the open type in stage 4. As a result of the maximum and minimum values of the max principal stress, closed type case much receives compressive stress about 620MPa-2019MPa. In case of open type, The load was reduced in all direction at each stage
        4,000원
        9.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper carried out design in order to reduce the process of asymmetric pinch yoke, one of the important parts which transfer power to wheels through gearing box in automobile steering system. The purpose of the study is to reduce prime costs and strengthen competitiveness by designing the total 8 processes including the up-setting and forging process of the No. 1 as the forging process the current method of production. The process with die stress analysis by using the finite element method have been carried out through new optimal die design. As this study result, it is expected that die life can be secured as excellent material flow and caused by forming load. A prototype has been produced by basis of the analysis result and the reduction of the process was successful. As the unit price is lower than that of the current process, the competitiveness can be expected.
        4,000원