검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.05 구독 인증기관·개인회원 무료
        The engineered barrier system (EBS) for deep geological disposal of high-level radioactive waste requires a buffer material that can prevent groundwater infiltration, protect the canister, dissipate decay heat effectively, and delay the transport of radioactive materials. To meet those stringent performance criteria, the buffer material is prepared as a compacted block with high-density using various press methods. However, crack and degradation induced by stress relaxation and moisture changes in the compacted bentonite blocks, which are manufactured according to the geometry of the disposal hole, can critically affect the performance of the buffer. Therefore, it is imperative to develop an adequate method for quality assessment of the compacted buffer block. Recently, several non-destructive testing methods, including elastic wave measurement technology, have been attempted to evaluate the quality and aging of various construction materials. In this study, we have evaluated the compressive wave velocity of compacted bentonite blocks via the ultrasonic velocity method (UVM) and free-free resonant column method (FFRC), and analyzed the relationship among compressive wave velocity, dry density, thermal conductivity, and strength parameter. We prepared compacted bentonite block specimens using the cold isostatic pressure (CIP) method under different water content and CIP pressure conditions. Based on multiple regression analysis, we suggest a prediction model for dry density in terms of manufacturing conditions. Additionally, we propose an empirical model to predict thermal conductivity and unconfined compressive strength based on compressive wave velocity. The database and suggested models in this study can contribute to the development of quality assessment and prediction techniques for compacted buffer blocks used in the construction of a disposal repository.
        2.
        2014.10 서비스 종료(열람 제한)
        In this study, It was found that replacing a large amount of mineral admixture, we satisfied the target, compressive strength of 30, 50MPa and manufactured lightweight concrete reducing CO2 emissions up to 42.1~52.8% comparing normal concrete
        3.
        2013.04 서비스 종료(열람 제한)
        In this study, KS F 2405 was used to investigated the compressive strength of property of high performance concrete (HPC) using the fly ash and silica fume. The experiments were carried out silica fume-binder ratio from 5% (SF5) and fly ash 25%+silica fume 5% (FA25SF5). The compressive strength of HPC determined on 7days and 28days.