검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 152

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 지구온난화로 인해 폭우, 눈 등 이상기후가 발생하면서 노면 동결(블랙아이스)로 인한 사고 및 인명피해가 늘어나고 있 는 것이 문제가 되고 있다. 이를 최소화하기 위해 본 연구에서는 다공성 골재인 팽창점토에 열저장이 가능한 상변화물질(PCM)을 적용 하였다. PCM은 상변화 과정에서 열에너지를 흡수, 저장, 방출할 수 있는 소재로 온도에 따른 결빙을 최소화할 수 있다. 따라서 본 연 구에서는 시멘트 복합재에 적용되는 PCM 함침이 가능한 경량골재에 진공함침을 실시하고 기계적, 열적 성능 검증 연구를 수행하였다. 열적 성능을 향상시키기 위해 다중벽탄소나노튜브(MWCNT)와 실리카흄을 첨가하였다. 본 연구에서는 물체의 열적 성능을 측정할 수 있는 DSC 실험을 통해 PCM 함침 경량골재 및 콘크리트 복합체의 열적 성능을 검증하였다. 콘크리트 복합체 제작 후 압축강도 시험 과 열적 성능시험을 실시하였다. 이때 열적 성능을 검증하기 위해 항온항습 챔버를 이용하여 시험을 진행하였다. 압축강도 실험을 통 해 MWCNT의 분삭액을 혼입한 PCM 함침 팽창점토가 적용된 콘크리트 복합체의 평균 압축강도는 24MPa 이상으로 구조물에 적용이 가능함을 확인하였다. 열적 성능시험을 통해 PCM 함침 팽창점토가 적용된 콘크리트 복합체는 영하의 외기온도에서도 영상의 온도를 유지할 수 있음을 확인하였다. 이와 같은 결과를 통해 주거 및 상업 건물 및 다양한 구조물에 적용이 가능할 것으로 판단된다.
        4,000원
        2.
        2024.04 구독 인증기관·개인회원 무료
        콘크리트는 우수하고 뛰어난 내구성에 의해 구조물 건설에 가장 많이 사용되는 재료 중 하나이다. 오늘날 급격한 경제의 발전 및 도시화 등에 의해 오늘날 구조물은 대형화 및 고층화되고 있다. 이에 따라 고강도, 고경량, 고내구 콘크리트 개발에 대한 다양한 연구가 진행되고 있다. 특히 나노소재가 첨 가된 콘크리트는 나노소재에 의해 미세공극이 충진되어 강도 및 내구성이 우수한 것으로 알려져있다. 그러나 기존 나노소재가 적용된 콘크리트는 단위중량이 높아 이를 구조물에 적용시 자중을 증가시키 는 단점이 있다. 이에 본 연구에서는 입자 직경이 10-100 μm이지만 입자 내부의 공극이 있어 단위 중량이 0.6t/m3인 Micro hollow sphere가 잔골재로 사용된 고경량, 고강도 콘크리트의 염화물 침투 특성을 평가하였다. 본 연구에서 사용된 실험변수로써 Micro hollow sphere의 잔골재 치환량(0%, 42%, 100%)가 고려되었으며, 이 시편의 단위중량은 각각 2.37 t/m3, 1.89 t/m3, 1.62 t/m3이다. Micro hollow sphere가 사용된 콘크리트의 염화물 침투 특성은 NT-Build 492 시험을 통해 평가되었다. 실 험결과 Micro hollow sphere 치환율이 0%, 42%, 100%인 실험체의 단위중량은 염화이온 확산계수는 각각 4.45 x10-13 m2/s, 2.57 x10-13 m2/s, 1.4x10-13 m2/s로 Micro hollow sphere 치환량이 증 가함에 따라 염화이온 침투 저항성이 증가하는 것으로 확인되었다. 따라서, Micro hollow sphere를 이용한다면 단위중량이 작으며 내구성이 큰 고경량, 고내구 콘크리트 배합이 가능할 것으로 판단된다.
        3.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해양폐기물 중 하나인 패각의 발생량은 매년 증가하고 있으나, 대부분이 해안 근처에 야적되거나 방치되어 환경적·사회적으로 문 제가 되고 있다. 천연 골재 부존량 감소에 따른 골재 대체재로서 패각이 사용된다면 재료 수송에 따른 물류비용을 효과적으로 감축시 킬 수 있어 자원 재활용을 활성화할 수 있다. 본 연구에서는 3D 콘크리트 프린팅 기술을 활용한 해양 구조물의 건설 재료로서 패각 잔 골재의 사용 가능성을 분석하였다. 패각을 활용한 3D 프린팅 콘크리트는 패각 잔골재와 시멘트 풀 계면 등의 공극 요인으로 일반 콘 크리트 대비 낮은 강도를 가지기 때문에 역학적 성능 평가를 위한 미세구조 특성 분석이 요구된다. 유동성, 출력성 및 적층성을 고려하 여 3D 프린팅 콘크리트의 배합을 선정하였으며, 패각 잔골재를 활용한 3D 프린팅 콘크리트 시편의 물성과 미세구조를 분석하였다. 시편의 물성을 평가하기 위해 3D 프린터로 압축강도와 부착강도 시편을 제작하였고 강도 시험을 진행하였다. 미세구조를 분석하기 위해 고해상도 이미지를 얻을 수 있는 SEM 촬영을 수행하였으며, 히스토그램 기반 상 분리 방법을 적용하여 공극을 분리하였다. 패각 잔골재 종류에 따른 공극률을 확인하고 확률함수를 활용하여 공극 분포 특성을 정량화하였으며, 패각 잔골재의 종류에 따른 시편의 역학적 물성과 미세구조 특성 간의 상관관계를 확인하였다.
        4,000원
        7.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The exposed aggregate concrete pavement (EACP) is adopted to achieve low traffic noise and long-term skid resistance in European countries such as Belgium and Germany. In Korea, it is first introduced at the Myeon Cheon field site in 2010. It reduces 3 dB(A) from tire–pavement noise compared with transverse tining. Recent investigations show that EACP can reduce tire–pavement noise by an additional 5 dB(A) compared with transverse tining. In this study, the tire–pavement interaction noise of EACP is compared with that of conventional pavements such as asphalt pavement, next-generation concrete surfaces (NGCS), and transverse tining. METHODS : EACP is constructed at two field sites on the SOC research center and Yeo-Ju test road to compare the noise level via close proximity noise measurement. In addition, the noise is measured using two vehicle type based on vehicle speeds of 60, 80, and 100 km/h. RESULTS : The results of noise measurement obtained from the SOC research center are as follows: Porous asphalt pavement 92.8 dB(A), HMA 96. dB(A), transverse tining 100.1 dB(A), and 8 mm EACP 97 dB(A) at a driving speed of 80 km/h. For the case of the Yeo-Ju test road. The noise levels at a driving speed of 80 km/h are as follows: 6 mm EACP, 93.6 dB(A); asphalt grooving pavement, 94.72 dB(A); 8 mm EACP, 95.2 dB(A); NGCS, 95.2 dB(A); transverse tining, 104.1 dB(A). CONCLUSIONS : The result of noise measurement of two sites in the SOC research center and test road shows that the noise level of the 6 mm EAC is lower than that of concrete pavement, such as tining and NGCS, and similar to that of asphalt pavement. In addition, the noise level of the 8 mm EAC is similar to that of the NGCS pavement. The noise reduction effect of the EAC is greater when small-sized coarse aggregates with lower flat and elongation ratios are used.
        4,000원
        9.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The exposed aggregate number (EAN) and mean texture depth (MTD) of exposed aggregate concrete pavement (EACP) influence the functional performance of EACP in terms of pavement noise and skid resistance. The selection of the exposure time of EACP is important because the designed EAN and MTD of EACP can be achieved when the exposure process is performed at an appropriate time. On the one hand, too early exposure may cause protrusions and unwanted removal of aggregates and mortar. On the other hand, late exposure may cause difficulty in exposure of the mortar. In this study, a method to determine the optimum exposure time for EACP is suggested using a non-destructive method. METHODS : A set of laboratory tests was performed to investigate the variation in EAN and MTD of EACP according to the elastic modulus obtained by non-destructive equipment. From the results of this investigation, the optimum exposure time using the non-destructive method and the exposure time window (ETW) method was suggested. In addition, the usefulness of ETW suggested by laboratory tests was verified from a field application. RESULTS : From the laboratory tests, it was found that the targets of the surface condition of EACP (EAN: 59 per 25 cm2, MTD: 1.39 mm) can be achieved when the concrete elastic modulus is higher than 20GPa. The proposed guideline using the non-destructive method was applied for the field construction of EACP and achieved similar results. CONCLUSIONS : It was found that the proposed guideline for determining the exposure time window based on non-destructive testing is useful.
        4,000원
        13.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Concrete pavement is excellent in structural performance and durability. However, its functionality – such as noise and skid resistance – is a shortcoming. Functionality such as noise reduction and skid resistance of concrete pavement is affected by the texture surface, and the texture surface is classified according to the length of the wavelength. In recent years, Fine-size exposed aggregate concrete pavement has been applied, which has excellent structural performance and durability, and secures functionalities such as noise reduction and long-term skid resistance by randomly forming texture surface. Fine-size exposed aggregate concrete pavements are constructed by removing the surface cement binder to randomly expose coarse aggregate and their functionality is mainly governed by the surface texture. However, deteriorated concrete by tire-pavement friction and deicing agent may cause abrasion and aggregate loss on the surface texture; thus reducing their functional performances. Abrasion is created by the thin cutoff of aggregate texture under repeated tire-pavement friction. In addition, aggregate loss is defined by the detachment of aggregates from cement binder. This study aims to evaluate the abrasion and aggregate loss of Fine-size exposed aggregate concrete pavement surface texture under tire-pavement friction and scaling tests. METHODS : In the study, abrasion and aggregate loss of tining and exposed aggregate concrete surface treatments were evaluated. Deterioration of each surface treatment was replicated by scaling test under ASTM C 672 test method. Afterward, abrasion test was conducted by ASTM C779 to simulate the tire-pavement friction under traffic. Consequently, abrasion and aggregate loss were measured. RESULTS : Abrasion depth of non-scaling tining, 10-mm EACP, and 8-mm EACP was 1.76, 1.12, and 1.01mm, respectively. Compared to scaling surface treatments, the difference of abrasion depth in tining texture was the largest with value of 0.4mm. For both textures of finesize exposed aggregate concrete, abrasion depth difference was about 0.1mm. Moreover, The 10-mm EACP exhibited a 2.6% of aggregate loss rate caused by tire-pavement friction before conducting concrete deterioration test. After 40-cycle scaling test, aggregate loss increased up to 12.2%. For 8-mm EACP, aggregate loss rate was 1.7% on non-scaling concrete. Further, this rate was magnified up to 7.3% for the 40-cycle scaling concrete. CONCLUSIONS : Under non-scaling or scaling tests, fine-size exposed aggregate concrete pavement showed better abrasion resistance than tining texture since tining was formed by aggregates and cement binder. Additionally, rate of aggregate loss was significant when EACP experienced the deicing agent under numerous cycles of freeze-thaw action.
        4,000원
        14.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The noise problem in concrete pavements has an adverse effect to the road user or nearby residents and is generated by the contact between a tire and the pavement surface. Exposed aggregate concrete pavements have been adopted to solve the tire-pavement noise problem in the United States and Europe. However, the efficiency of the coagulation retarder and exposure equipment used for this kind of pavement has not yet been investigated. Therefore, this study aims to evaluate the ability of the coagulation retarder and exposure equipment in producing the optimum exposed aggregate texture to achieve low pavement noise. A method for the exposure time selection has also been introduced here. METHODS: Sodium gluconate retarders were selected for use in this study. The retarder-water ratios of 1:1, 1:2, and 1:3 were investigated. The retarder was sprayed on a fresh concrete surface with rates of 200 g/m2, 300 g/m2, and 400 g/m2. The aggregates were then exposed to the surface using a steel brush and a water jet. The efficiencies for the low-noise texture, workability, and environmental impact produced by the two exposure devices were estimated. The EAN and the MTD were investigated according to the exposure time. RESULTS : The aggregates were exposed after the retarder was sprayed on the fresh concrete surface; the exposure lasted for 18 h to 26 h each time. The retarder-water ratio of 1:2 and the spraying rate of 300 g/m2 produced an optimum surface texture for low noise. Additionally, the steel brush performed more effectively in exposing aggregate to the surface compared to the water jet. The selected exposure time window (ETW) was 28 h to 35 h. CONCLUSIONS : The optimum retarder was the sodium gluconate retarder with a retarder-water ratio of 1:2 and a spraying rate of 300 g/m2. The steel brush showed a good performance in exposing the aggregates and showing the efficiency of the coagulation retarder in the given environment so as to produce the quality control condition. The ETW was influenced by the construction, mixture design, and construction environment; however, the selected ETW in this study was 26 h~35 h.
        4,000원
        15.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In many European countries, the fine-size exposed aggregate concrete pavement (EACP) technique has been adopted for a quiet pavement. However, different noise reduction levels were reported based on the mixture design and texture conditions. This study aims to suggest a quality control condition for achieving low-noise texture and a mixture design procedure for exposed aggregate concrete overlay (EACO), which will provide the optimum mixture of the surface texture that can reduce the tire-pavement noise. METHODS : The tire-pavement noise is highly influenced by the pavement surface texture. The surface texture of the EACP can be quantified by the mean texture depth (MTD) and the exposed aggregate number (EAN). The optimum condition for the low-noise texture of the EACP was investigated herein based on the analysis of the review of the texture conditions and noise measurement in many EACP sites. RESULTS : The MTD and EAN criteria can be derived according to the investigated relationship between noise and texture condition. The optimum mixture design to satisfy these criteria can be achieved by controlling the maximum size of the coarse aggregate and the S/a. CONCLUSIONS: This study aimed to suggest a quality control condition for achieving low-noise texture and an optimum mixture design for EACO. As a result, we found that the early traffic opening of EACO can be achieved by using high early-strength cement.
        4,200원
        16.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        천연골재의 부족으로 골재 수급이 날이 갈수록 심각해지면서 재활용 가능한 재료에 대한 사회적 관심이 높아지고 있다. 하지만 국내에서는 선진외국에 비해 순환골재에 대한 연구데이터와 그를 사용한 현장 적용실정이 매우 부족한 실정이다. 본 논문에서는 현장에서 사용하는 레미콘 사의 가이드 배합에 순환골재를 전량 치환하는 배합비를 추출하여 압축강도를 평가하였 고 추출된 배합비의 순환골재 콘크리트를 원형강관 내부에 충전하여 순환골재콘크리트충전 합성기둥이 국내ㆍ국외 설계식을 반 영한 내력과 비교하여 구조부재로써 사용이 적합하다고 사료되는 결과를 얻었다. 또한, 강관의 콘크리트 구속효과로 인해 강관 내부의 콘크리트 강도가 미세하게 증가함을 확인하였다.
        4,000원
        19.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This paper presents the noise reduction effect of asphalt concrete pavement using steel slag aggregate. METHODS: Steel slag aggregates induce various mechanical effects because of their high stiffness and specific gravity. It is also known that the noise reduction effect is due to its high specific gravity and porous nature. In this study, the noise reduction in a steel slag asphalt concrete pavement section was measured and analyzed. RESULTS : On average, an asphalt concrete pavement with steel slag reduces road traffic noise by about 2 dB(A). In addition, the analysis of sound pressure levels by frequency showed lower sound pressure levels in steel slag asphalt concrete pavement than general HMA in all frequency ranges (from low to high frequencies). An analysis of the benefits with regard to noise, by assuming a road-traffic noise reduction of 2 dB(A) with asphalt concrete pavement using steel slag, shows that the noise abatement cost approach can save 1.6 million won a year over soundproof wall costs. In addition, the noise damage cost approach results in cost savings (with regard to noise) of between 19 and 60 million won per year depending on the population density. CONCLUSIONS: The use of steel slag aggregate as an asphalt concrete mixture material not only improves the mechanical performance but also has a noise reduction effect. It is expected that the steel slag asphalt concrete pavement can reduce the environmental burden by utilizing resources and provide a safer and more comfortable pavement condition to the road users.
        4,000원
        20.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In Korea, asphalt overlay has been used as a typical alternative rehabilitation method for deteriorated pavements. However, asphalt overlay has problems due to poor bonding of the asphalt overlay and the old concrete. Recently, concrete overlays, which have advantages such as long-term durability and high structural capacity to carry heavy traffic, have been considered for rehabilitation construction. However, concrete overlays have limitations such as difficulty in opening to traffic and pavement noise. Recently, an appropriate fine-size exposed aggregate concrete pavement technique was reported to solve these problems. Therefore, this study aims to suggest an optimum mixture design of fine-size exposed aggregate concrete overlay (EACO) that can ensure low noise and early strength. METHODS : The optimum mixture design of fine-size EACO is determined to ensure adequate structural performance for early traffic opening and good functional performances such as low noise. Therefore, the optimum mixture proportion is determined based on the optimum design of aggregate content to produce a low-noise pavement texture by controlling the exposed aggregate number (EAN) and mean texture depth (MTD). RESULTS : The water-cement ratio and unit cement ratio were used to determine the mixture designs to achieve workability and adequate strength for early traffic opening. The texture was determined by selecting the maximum size of coarse aggregate smaller than 10 mm with an S/a ratio of less than 30% for low noise. With these mixture proportions, the EAN and MTD were 50±5 / 25cm2 and 1.0±0.2 mm. Respectively, which meet the criteria for EACO. CONCLUSIONS: In this study, an optimum mixture design of EACO for early traffic opening and low noise is suggested by using earlyhigh strength cement, and the pavement texture is implemented considering EAN and MTD. In addition, a pavement surface texture criterion is suggested for the quality control of EACO.
        4,300원
        1 2 3 4 5