검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        2.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated the suppression of the corrosion of cast iron in a copper–cast iron double-layered canister under local corrosion of the copper layer. The cold spray coating technique was used to insert metals with lower galvanic activity than that of copper, such as silver, nickel, and titanium, between the copper and cast iron layers. Electrochemically accelerated corrosion tests were performed on the galvanic specimens in KURT groundwater at a voltage of 1.0 V for a week. The results revealed that copper corrosion was evident in all galvanic specimens of Cu–Ag, Cu–Ni, and Cu–Ti. By contrast, the copper was barely corroded in the Cu–Fe specimens. Therefore, it was concluded that if an inactive galvanic metal is applied to the areas where local corrosion is concerned, such as welding parts, the disposal canister can overcome local or non-uniform corrosion of the copper canister for long periods.
        4,300원
        3.
        2023.11 구독 인증기관·개인회원 무료
        Due to the necessity of isolating spent nuclear fuel (SNF) from the human life zone for a minimum of 106 years, deep geological disposal (DGD) has emerged as a prominent solution for SNF management in numerous countries. Consequently, the resilience of disposal canisters to corrosion over such an extended storage period becomes paramount. While copper exhibits a relatively low corrosion rate, typically measured in millimeters per million years, in geological environment, special attention must be directed towards verifying the corrosion resistance of copper canister welds. This validation becomes inevitable during the sealing of the disposal canister once SNFs are loaded, primarily because the weld zone presents a discontinuous microstructure, which can accelerate both uniform and localized corrosion processes. In this research, we conducted an in-depth analysis of the microstructural characteristics of copper welds manufactured by TIG-based wire are additive manufacturing, which is ideal for welding relatively large structures such as a disposal canister. To simulate the welds of copper canister, a 12 mm thick oxygen-free plate was prepared and Y and V grooves were applied to perform overlay welding. Both copper welding zones were very uniform, with negligible defects (i.e., void and cracks), and contained relatively large grains with columnar structure regardless of groove types. For improving microstructures at welds with better corrosion resistance, the effect of preheat temperature also investigated up to 600°C.
        4.
        2023.05 구독 인증기관·개인회원 무료
        Since spent nuclear fuel (SNF) should be isolated from the human life zone for at least 106 years, deep geological disposal (DGD) is considered a strong candidate for SNF management in many countries. Therefore, a disposal canister should be nearly immune to corrosion in such a long-term storage environment. Even though copper has a low corrosion rate of a few millimeters per million years in geological environments, the corrosion resistance of the copper welds must be preferentially validated, which inevitably occurs during the sealing of the disposal canister after the SNF is loaded. This is because the weld zone is a discontinuous area of microstructure, which can accelerate uniform and localized corrosion. In this study, the microstructural characteristics of copper welds in different welding conditions such as friction stir welding, electron beam welding, cold spray, were analyzed, focusing on the formation of microstructure, which affects resistance to corrosion. In addition, the microstructure and corrosion properties of the copper weld zone manufactured by recent wire-based additive manufacturing (AM) technology were experimentally evaluated. From this preliminary test result, it was found that the corrosion characteristics of the welds produced by the AM process using wire are comparable to those of the conventional forged copper plate.
        5.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The major concern in the deep geological disposal of spent nuclear fuels include sulfide-induced corrosion and stress corrosion cracking of copper canisters. Sulfur diffusion into copper canisters may induce copper embrittlement by causing Cu2S particle formation along grain boundaries; these sulfide particles can act as crack initiation sites and eventually cause embrittlement. To prevent the formation of Cu2S along grain boundaries and sulfur-induced copper embrittlement, copper alloys are designed in this study. Alloying elements that can act as chemical anchors to suppress sulfur diffusion and the formation of Cu2S along grain boundaries are investigated based on the understanding of the microscopic mechanism of sulfur diffusion and Cu2S precipitation along grain boundaries. Copper alloy ingots are experimentally manufactured to validate the alloying elements. Microstructural analysis using scanning electron microscopy with energy dispersive spectroscopy demonstrates that Cu2S particles are not formed at grain boundaries but randomly distributed within grains in all the vacuum arc-melted Cu alloys (Cu-Si, Cu-Ag, and Cu-Zr). Further studies will be conducted to evaluate the mechanical and corrosion properties of the developed Cu alloys.
        4,000원
        6.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, an approach developed by the Finnish nuclear waste management organization, Posiva, for the construction license of a geological repository was reviewed. Furthermore, a computer program based on the approach was developed. By using the computer program, the lifetime of a copper disposal canister, which was a key engineered barrier of the geological repository, was predicted under the KAERI Underground Research Tunnel (KURT) geologic conditions. The computer program was developed considering the mass transport of corroding agents, such as oxygen and sulfide, through the buffer and backfill. Shortly after the closure of the repository, the corrosion depths of a copper canister due to oxygen in the pores of the buffer and backfill were calculated. Additionally, the long-term corrosion of a copper canister due to sulfide was analyzed in two cases: intact buffer and eroded buffer. Under various conditions of the engineered barrier, the corrosion lifetimes of the copper canister due to sulfide significantly exceeded one million years. Finally, this study shows that it is necessary to carefully characterize the transmissivity of rock and sulfide concentration during site characterization to accurately predict the canister lifetime.
        4,300원