검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 45

        1.
        2023.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A Forbush decrease (FD) is a depression of cosmic ray (CR) intensity observed by ground-based neutron monitors (NMs). The CR intensity is thought to be modulated by the heliospheric magnetic structures including the interplanetary coronal mass ejection (ICME) surrounding the Earth. The different magnitude of the decreasing in intensity at each NM was explained only by the geomagnetic cutoff rigidity of the NM station. However, sometimes NMs of almost the same cutoff rigidity in northern and southern hemispheres observe the asymmetric intensity depression magnitudes of FD events. Thus, in this study we intend to see the effects on CR intensity modulation of FD event recorded at different NMs due to different ICME propagation directions as an additional parameter in the model explaining the CR modulation. Fortunately, since 2006 the coronagraphs of twin spacecraft of the STEREO mission allow us to infer the propagation direction of ICME associated with the FD event in 3-dimension with respect to the Earth. We suggest the hypothesis that the asymmetric CR modulations of FD events are determined by the propagation directions of the associated ICMEs.
        4,000원
        2.
        2022.10 구독 인증기관·개인회원 무료
        This study was performed to assess the cosmic-ray effect caused by altitude in the aerial gammaray measurement. For the gamma-ray measurement experiment by altitude, the aerial survey system composed of four 4×4×16 inches large volume NaI (Tl) detectors was used. The aerial survey system was installed in a rotor-craft to stably keep its flight altitude and position. In addition, in order to avoid to time-dependent shielding effects with the amount of fuel, a rotor-craft of which the fuel tank is not located beneath the cabin floor was selected. In this study, the ROI (Region Of Interest) was set to the 3~6 MeV range to assess the cosmic-ray contribution to the gamma-ray spectrum that could ignore the contribution of the dominant natural radionuclides. The gamma-ray spectra measured inside and outside of the rotor-craft on the ground were compared to evaluate the shielding effects of the aircraft body. As a result, the count rate of the 40K photo peak was decreased by about 10% when measuring the inside compared to the outside. On the other hand, the total count rate of the 3~6 MeV region was decreased by about 0.7% under the same condition. Therefore, the aircraft body effect was insignificant in 3~6 MeV region considering the relative uncertainty of 0.04~0.78% (1σ). In addition, the count rate in the 3~6 MeV range according to altitude was evaluated to assess the cosmic-ray effect. In order to evaluate the change in the ROI count rate according to the altitude, the gamma-ray spectrum was measured in the range of 300~2,000 m above the sea to avoid the effect of terrestrial radiation. As a result, the relationship between altitude and count rate in the 3~6 MeV range showed a high correlation with the R2 value of 0.99, when the approximate equation was derived in the form of a quadratic polynomial. Also, the count rate of 3~6 MeV at 50~500 m above the ground was estimated using the correlation equation, and this value was compared with the measured count rate. As a result of comparing the average value of estimated count rate and measured count rate, the relative difference is less than 2%. Considering the relative uncertainty of 0.78~4.11% (1σ), it was possible to evaluate the count rate of the 3~6 MeV region relatively accurately. The results of this study could be used for further study on background dose corrections in aerial survey.
        4.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The amount of mechanical energy deposited in the interstellar medium by the wind from a massive star can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life. In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity due to all massive stars in the Galaxy is about Lw ≈ 1.1 × 1041 erg s−1, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8 × 1041 erg s−1. If we assume that ∼ 1 − 10 % of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds might be expected to make a significant contribution to GCR production, though lower than that of supernova remnants.
        4,300원
        11.
        2010.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We perform kinetic simulations of diffusive shock acceleration (DSA) in Type Ia supernova remnants (SNRs) expanding into a uniform interstellar medium (ISM). Bohm-like diffusion due to self-excited Alfven waves is assumed, and simple models for Alfvenic drift and dissipation are adopted. Phenomenological models for thermal leakage injection are considered as well. We find that the preshock gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration efficiency and energy spectrum, while the CR injection rate is a secondary parameter. For SNRs in the warm ISM of T0 ≲ 105K, if the injection fraction is ≳ 10-4, the DSA is efficient enough to convert more than 20% of the SN explosion energy into CRs and the accelerated CR spectrum exhibits a concave curvature flattening to E-1.6, which is characteristic of CR modified shocks. Such a flat source spectrum near the knee energy, however, may not be reconciled with the CR spectrum observed at Earth. On the other hand, SNRs in the hot ISM of T0 ≈106K with a small injection fraction, < 10-4, are inefficient accelerators with less than 10% of the explosion energy getting converted to CRs. Also the shock structure is almost test-particle like and the ensuing CR spectrum can be steeper than E-2. With amplified magnetic field strength of order of 30μG Alfven waves generated by the streaming instability may drift upstream fast enough to make the modified test-particle power-law as steep as E-2.3, which is more consistent with the observed CR spectrum.
        4,800원
        12.
        2009.04 구독 인증기관·개인회원 무료
        15.
        2007.04 구독 인증기관·개인회원 무료
        18.
        2006.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have calculated the cosmic ray(CR) acceleration at young remnants from Type Ia supernovae expanding into a uniform interstellar medium(ISM). Adopting quasi-parallel magnetic fields, gasdynamic equations and the diffusion convection equation for the particle distribution function are solved in a comoving spherical grid which expands with the shock. Bohm-type diffusion due to self-excited Alfven waves, drift and dissipation of these waves in the precursor and thermal leakage injection were included. With magnetic fields amplified by the CR streaming instability, the particle energy can reach up to 1016Z eV at young supernova remnants(SNRs) of several thousand years old. The fraction of the explosion energy transferred to the CR component asymptotes to 40-50 % by that time. For a typical SNR in a warm ISM, the accelerated CR energy spectrum should exhibit a concave curvature with the power-law slope flattening from 2 to 1.6 at E ≳ 0.1 TeV.
        4,200원
        20.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the results of the linear analysis for the Parker-Jeans instability in the magnetized gas disks including the effect of cosmic-ray diffusion along the magnetic field lines. We adopted an uni-formly rotating two temperature layered disk with a horizontal magnetic fields and solved the perturbed equations numerically. Fragmentation of gases takes place and filamentary structures are formed by the growth of the instability. Nagai et al. (1998) showed that the direction of filaments being formed by the Parker-Jeans instability depends on the strength of pressure outside the unperturbed gas disk. We found that at some range of external pressures the direction of filaments is also governed by the value of the diffusion coefficient of CR along the magnetic field lines k.
        3,000원
        1 2 3