The dismantling of the reactor pressure vessel has been carried out at a number of commercial nuclear power plants, including the Zion nuclear power plant in the United States and the Stade nuclear power plant in Germany. The dismantling method for the reactor pressure vessel is either in the air or in the water, depending on the utility. In general, a mechanical cutting method is used when dismantling the reactor pressure vessel in the water. And when dismantling a nuclear reactor pressure vessel in the air, the thermal cutting method is applied. However, there is no case of dismantling commercial nuclear reactor pressure vessel by applying a mechanical method in the air. In this study, when a nuclear reactor pressure vessel is dismantled by applying a mechanical method in the air, the applicability was evaluated by testing it using a demonstration mockup of Kori Unit 1. For the evaluation, the mockup was made in the actual size of Kori Unit 1. Mechanical cutting devices used the band saw and the circular saw. In the test, the cutting of the reactor pressure vessel was performed remotely by reflecting the working conditions of the decommissioning site. The band saw cutting method was applied to vertical cutting, and the circular saw cutting method was applied to horizontal cutting. In order to dismantle one cut-off piece, mockup test was performed according to a series of dismantling processes, it consists of preparatory work, vertical cutting process, horizontal cutting process, packaging process and finishing work. The cutting speed of the band saw is 3–10 mm·min−1, and the cutting speed of the circular saw is 2–4 mm·min−1. As a result of the test, when the mechanical cutting method was applied, as is known, the kerf width was smaller than when the thermal cutting method was applied. The cut surface showed a clean state without drag lines generated during thermal cutting. However, the working time was much slower than when the thermal cutting method was applied.
본 연구에서는 0.5 wt% 에멀젼형 절삭유 수용액에 평막형 분리막을 침지시키고 대칭 및 비대칭 사인파형 투과유속 연속운전(SFCO) 방식으로 실험하였다. 사용한 정밀여과막은 유효 막면적이 0.02 m2이고 공칭 세공크기가 0.15 μm이었다. 탁도 기준으로 에멀젼형 절삭유의 99% 이상이 제거되었으며 산기량이 증가할수록 TMP가 낮게 상승하였다. 비대칭형 SFCO 운전방식은 투과유속이 낮은 10∼15 L/m2·h 영역에서 대칭형 SFCO 운전방식보다 다소 유리하였다. 하지만, 투과유속이 높은 25∼30 L/m2·h에서는 대칭형 SFCO 운전이 매우 효과적임을 확인할 수 있었다.
본 연구에서는 침지형 정밀여과막(공칭공경 0.15㎛, CPVC)을 사용하여 에멀젼형 절삭유(MECOOL-7000, Megalube사) 수용액을 처리하였다. 막 오염을 효과적으로 감소시키기 위하여 대칭형 또는 비대칭형의 사인파형 투과유속 연속운전(Sinusoidal flux continuous operation; SFCO) 실험을 실시하였다. 분리막의 투과유속이 증가함에 따라서 막간차압이 증가하였으나, 대칭형 운전방식이 비대칭형 운전방식에 비하여 막간차압이 낮게 형성되어 막오염 제어에 효과적임을 확인할 수 있었다.