검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 20

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the enhancement of surface precision and dimensional accuracy in STS 316L oval pipes through the application of magnetic abrasive finishing. The experiment involves the modification magnetic pole shapes(A, B, C, D) and a comprehensive analysis of their impact on surface quality. Key parameters include magnetic abrasive KX#320, iron powder, aluminum oxide, light oil, a test specimen rotating at 600rpm, and periodic injection of polishing liquid, a permanent magnet Nd-Fe-B, and magnetic pole steel 1018, reciprocating distance 20mm, and a feed rate 1mm/sec over a 32minutes duration with measurements every 4minutes. The results demonstrate significant variations in surface quality based on magnetic pole shape, with specific configurations demonstrating superior precision and smoothness from the initial surface 0.32μm to 0.06μm.
        4,000원
        4.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 Monopile 방식 풍력발전기 강구조물의 부식을 방지하기 위하여 S355 steel의 표면 거칠기에 따른 용사 코팅 상태에 관한 연구를 수행했다. 일차적으로는 시편별 서로 다른 표면거칠기를 부여하기 위해 밀링머신에 페이스 커터를 결합하여 시편별로 다른 조건의 Ra값 기준 표면거칠기를 부여했다. 실험 조건으로는 시편 가공 시 4가지의 회전속도(60, 400, 1200, 2000 rpm), feed rate 150(mm/min) 조건을 선정했다. 2차로는 와이어 용융 방식의 아크 용사 코팅을 실시했다. 코팅 조건으로는 분사 거리 200mm, 전압 24V, 전류 120A, 분사 압력 5bar, 와이어 삽입 속도 30g/mm, 와이어 직경 2mm이다. 용사 코팅 후 FE-SEM으로 표면을 관찰한 결과 모든 시편의 S355 면과 코팅층(아연-알루미늄) 사이에 유격이 발생하지 않고 성공적으로 안착이 되었음을 확인할 수 있었다.
        4,000원
        5.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, the a novel finishing machine was used for hight-precision surface of spherical ball products that have been widely used for on/off valve for hydrogen energy flowing system and in medical field such as artificial hip joint component. The spherical balls products are the workpiece that made by Co-Cr-Mo alloys with 32-mm in diameter and Sa≈ 0.30μm in surface roughness. Their surface roughness was successfully improved via the magnetic abrasive tools that controlled the magnetic field of permanent magnets. The critical input conditions were selected as rotational speed: 800rpm, gap: 3mm, tool grain size: 1-μm finishing time: 0, 3, 6, 9, 12, and 15min. The results of this research showed that under the given finishing conditions, the high surface quality in the terms of surface precision of spherical ball products are successfully achieved, in which the surface roughness is reduced from 0.30-μm to 0.04-μm within the short finishing time at 12min. Therefore, it can be concluded that a novel finishing machine is feasible to be used for improving the surface roughness of spherical ball products, resulted in high surface precision of materials.
        4,000원
        9.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnetic abrasive finishing process is one of the advanced finishing technique, which is commonly used to improve the surface accuracy and dimensional of many products in various application such as for medical implant, automotive, electrical, and IT, etc. In this study, the MAF process using rotating magnetic field with flexible processing force is used to smooth the surface of STS 316L stents wire under the optimal conditions such as rotating speed: 150, 350, 600rpm; diamond grain size: 1, 3, 6-μm, and processing time: 20, 40, 60, 80min. The results showed that under the processing conditions, quality enhancement in surface accuracy of STS 316L stent wire is achieved, in which the surface roughness is reduced from 0.22 to 0.06-μm.
        4,000원
        16.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, the magnetic abrasive finishing process using (Nd-Fe-B) permanent magnet was applied to confirm the performance and to find the optimum conditions. The STS304 bar was used as the specimen in this experiment. In order to confirm the performance of magnetic abrasive finishing process, the surface roughness (Ra) and diameter reduction were measured when the specimens were processed under the conditions of rotational speeds, frequencies, and magnetic pole shapes. The rotational speeds were varied at 8000rpm, 15000rpm, 20000rpm, and 25000rpm. And the frequencies were changed to 0Hz, 4Hz and 10Hz. Also the shapes of the magnetic pole were changed to flat edge, sharp edge and round edge. It can be concluded that the surface roughness (Ra) and diameter reduction were found to be the best at 25000rpm, 4Hz, flat edge.
        4,000원