검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2023.11 구독 인증기관·개인회원 무료
        Economical radioactive soil treatment technology is essential to safely and efficiently treat of high-concentration radioactive areas and contaminated sites during operation of nuclear power plants at home and abroad. This study is to determine the performance of BERAD (Beautiful Environmental construction’s RAdioactive soil Decontamination system) before applying magnetic nanoparticles and adsorbents developed by the KAERI (Korea Atomic Energy Research Institute) which will be used in the national funded project to a large-capacity radioactive soil decontamination system. BERAD uses Soil Washing Process by US EPA (402-R-007-004 (2007)) and can decontaminate 0.5 tons of radioactive soil per hour through water washing and/or chemical washing with particle size separation. When contaminated soil is input to BERAD, the soil is selected and washed, and after going through a rinse stage and particle size separation stage, it discharges decontaminated soil separated by sludge of less than 0.075 mm. In this experiment, the concentrations of four general isotopes (A, B, C, and D which are important radioisotopes when soil is contaminated by them.) were analyzed by using ICP-MS to compare before and after decontamination by BERAD. Since BERAD is the commercial-scale pilot system that decontaminates relatively large amount of soil, so it is difficult to test using radioactive isotopes. So important general elements such as A, B, C, and D in soil were analyzed. In the study, BERAD decontaminated soil by using water washing. And the particle size of soil was divided into a total of six particle size sections with five sieves: 4 mm, 2 mm, 0.850 mm, 0.212 mm, and 0.075 mm. Concentrations of A, B, C, and D in the soil particles larger than 4 mm are almost the lowest regardless of before and after decontamination by BERAD. For soil particles less than 4 mm, the concentrations of C and D decreased constantly after BERAD decontamination. On the other hand, the decontamination efficiency of A and B decreased as the soil particle became smaller, but the concentrations of A and B increased for the soil particle below 0.075 mm. As a result, decontamination efficiency of one cycle using BERAD for all nuclides in soil particles between 4 mm and 0.075 mm is about 45% to 65 %.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Laser scabbling has the potential to be a valuable technique capable of effectively decontaminating highly radioactive concrete surface at nuclear decommissioning sites. Laser scabbling tool using an optical fiber has a merits of remote operation at a long range, which provides further safety for workers at nuclear decommissioning sites. Furthermore, there is no reaction force and low secondary waste generation, which reduces waste disposal costs. In this study, an integrated decontamination system with laser scabbling tool was employed to test the removal performance of the concrete surface. The integrated decontamination system consisted of a fiber laser, remote controllable mobile cart, and a debris collector device. The mobile cart controlled the translation speed and position of the optical head coupled with 20 m long process fiber. A 5 kW high-powered laser beam emitted from the optical head impacted the concrete block with dimensions of 300 mm × 300 mm × 80 mm to induce explosive spalling on its surface. The concrete debris generated from the spalling process were collected along the flexible tube connected with collector device. We used a three-dimensional scanner device to measure the removed volume and depth profile.
        3.
        2022.10 구독 인증기관·개인회원 무료
        In the field of 3H decontamination technology, the number of patent applications worldwide has been steadily increasing since 2012 after the Fukushima nuclear accident. In particular, Japan has a relatively large number of intellectual property rights in the field of 3H processing technology, and it seems to have entered a mature stage in which the growth rate of patent applications is slightly reduced. In Japan, tritium is being decontaminated through the Semi-Pilot-class complex process (ROSATOM, Russia) using vacuum distillation and hydrogen isotope exchange reaction, and the Combined Electrolysis Catalytic Exchange (CECE, Kurion, U.S.) process. However, it is not enough to handle the increasing number of HTOs every year, so the decision to release them to the sea has been made. Another commercial technology in foreign countries is the vapor phase catalyst exchange process (VPCE) in operation at the Darlington Nuclear Power Plant in Canada. This process is a case of applying tritium exchange technology using a catalyst in a high-temperature vapor state. The only commercially available tritium removal technology in Korea is the Wolseong Nuclear Power Plant’s Removal Facility (TRF). However, TRF is a process for removing HTO from D2O of pure water, so it is suitable only for heavy water with high tritium concentration, and is not suitable for seawater caused by Fukushima nuclear power plant’s serious accident, and surface water and groundwater contaminated by environmental outflow of tritium. Until now, such as low-temperature decompression distillation method, water-hydrogen isotope exchange method, gas hydrate method, acid and alkali treatment method, adsorption method using inorganic adsorbent (zeolite, activated carbon), separator method using electrolysis, ion exchange adsorption method using ion exchange resin, etc. have been studied as leading technologies for tritium decontamination. However, any single technology alone has problems such as energy efficiency and processing capacity in processing tritium, and needs to be supplemented. Therefore, in this study, four core technologies with potential for development were selected to select the elemental technology field of pilot facilities for treating tritium, and specialized research teams from four universities are conducting technology development. It was verified that, although each process has different operating conditions, tritium removal performance is up to 60% in the multi-stage zeolite membrane process, 30% in the metal oxide & electrochemical treatment process, 43% in the process using hydrophilic inorganic adsorbent, and 8% in the process using functional ion exchange resin. After that, in order to fuse with the pretreatment process technology for treating various water quality tritium contaminated water conducted in previous studies, the hybrid composite process was designed by reflecting the characteristics of each technology. The first goal is to create a Pilot hybrid tritium removal facility with 70% tritium removal efficiency and a flow rate of 10 L/hr, and eventually develop a 100 L/hr flow tritium removal system with 80% tritium removal efficiency through performance improvement and scale-up. It is also considering technology for the postprocessing process in the future.
        4.
        2022.05 구독 인증기관·개인회원 무료
        Laser scabbling experiments were conducted with the aim of developing concrete decontamination technology. Laser scabbling system contains a 6 kW fiber laser (IPG YLS-6000, λ=1,070 nm) and optical head, which are connected with process fiber (core dia.: 600 μm, length: 20 m). Optical head consists of two lenses (f = 160 mm and 100 mm) to collimate and focus laser beam. The focused laser beam is passed through the small diameter of nozzle (throat dia.: 3 mm) to prevent the laser-produced debris into head. And then, the focused beam is directed toward concrete block as continuously diverging. The diverged laser beam was incident on the high-strength concrete with 300 mm (length) × 300 mm (height) × 80 mm (width) to induce explosive spalling on the concrete surface. The optical head was moved by X-Y-Z manipulate coupled with a computerized numerical control while scabbling. We have observed not only active spalling on the concrete surface but energetic scattering of laserproduced debris when scabbling on high-strength concretes. It indicates the need for a device capable of collecting the laser-produced debris. We newly designed and manufactured dust collector coupled with cylindrical tube to prevent scattering of laser-produced debris into ambient environment. The collecting system was evaluated by estimating the collecting efficiency for laser-produced debris while scabbling. The collecting efficiency was calculated on the basis of the information on the mass loss of concrete block after laser scabbling and the mass of collected debris in a container. The collecting efficiency was found to be over 85%.
        9.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        원자력발전소 운영 과정에서 발생되는 폐기물인 폐수지를 원천적으로 저감하기 위해, 새로운 폐수 정화기술을 개발하고 원전 폐수처리시스템에 가상적으로 적용하여 효용성을 평가하고자 하였다. 본 기술의 기본 원리는 폐수에 존재하는 주요 핵 종이온들을 생물학적 혹은 화학적 방법을 통해 무기 결정광물로 바꾸는 방식이다. 실험실에서 폐수를 대상으로 회분식실험을 통해 핵종 제거율을 측정한 결과, 생물학적 방법은 24시간 이내에 세슘을 80% 이상 제거하였고, 화학적 방법은 95% 이상 세슘을 선택적으로 제거할 수 있었다. 그리고 원전 폐수에 존재하는 다른 주요 핵종들(Co, Ni, Fe, Cr, Mn, Eu)에 대해서도 초기 99% 이상의 높은 제거율을 보여 주었다. 우리는 APR1400 원자력발전소의 폐수처리시스템 공정에서 역삼투압(R/O)과 유기 이온교환수지 모듈 사이에 가상으로 본 기술 모듈을 설치하였다. 가상의 모듈 설치를 통한 기술적 타당성 평가를 통해, 우리는 폐수의 주요 핵종들이 90% 이상 선택적으로 제거되고 폐수지의 발생량이 대폭 감소된다는 결과를 얻을 수 있었다. 이러한 결과가 의미하는 바는 본 기술이 향후 미래에 상용화되었을 경우, 폐수지 관리 비용을 크게 감소시키고 수지 수명도 대폭 연장시킬 수 있어, 결과적으로 월성 방사성폐기물 처분시설의 저장고 포화시점을 최대한 늦출 수 있는 이점이 있다.
        4,800원
        12.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 원전해체 시 적용 가능한 제염기술을 조사하여 분석하였다. 이를 기반으로 최적의 제염기술을 선정하기 위 해 의사결정 기법(EXPERT-CHOICE)을 사용하여 기술성을 평가하였다. 이 평가방법은 해당 분야의 전문가로 이루어진 전 문가 집단에 의해 수행되는 것이 일반적이다. 가중치를 고려한 결과는 각 기준에 대한 가중치에 평가점수를 곱한 총합을 구 하는 식으로 수행하였다. 평가 점수를 3단계로 하여 High, Medium, Low로 구분한 후 가중치를 부여하여 차별화 시킬 수 있 다. 하위분류 기준의 세분화와 각 기준 별 가중치의 추가 정량화를 통하여 기술성 분석의 수준을 제고할 수 있고, 좀 더 설 득력 있는 결과의 도출을 예상할 수 있다. 평가의 기본 가정은 각 기준 별 가중치를 전문가 조사에 의해 부여하며, 평가 기 준은 High에 좀 더 비중을 주는 식으로 차별화 하였다. 이를 반영하면 H, M, L는 대략“10:5:1”의 비율로 평가 점수를 부여 받는데, 이는 EXPERT-CHOICE 기법의 최적화 분석에 따른 것이다. 최고 및 최저값을 제외한 나머지 결과값의 평균을 평가 치로 고려하였다.
        4,000원
        14.
        2016.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        제염은 원전 해체를 위한 가장 중요한 기술 중의 하나이다. 제염은 해체작업자의 피폭을 감소시키고 발전소 일부 부품을 재 활용 할 수 있게 한다. 현재는 해체 제염기술의 효용성에 대한 자료가 많지는 않다. 대부분의 경우, 제염 후, 부분적인 방사 능준위가 규제의 적용을 받지 않는 수준까지 낮아 질 수 있으므로 좋은 제염효율을 갖는 제염기술은 꾸준히 개발되어야 한 다. 본 논문에는 이러한 제염기술을 활용하여 원전을 해체한 미국 및 유럽국가들의 경험사례를 설명하였다. 국내 원전을 해 체 할 경우 이 연구가 선행사례로 활용될 수 있을 것이다.
        4,200원
        15.
        2017.11 서비스 종료(열람 제한)
        현재 중국을 제외한 전세계에서 가동중인 원전중 50% 이상이 운전을 시작한지 30년 이상으로, 앞으로 해체가 진행될 원전이 대부분이다. 우리나라 역시 고리 1호기를 시작으로 수명연장이 없을 경우 10년 이내에 총 5기의 원전이 폐로될 것으로 예상되며 향후 해체를 진행해야 한다. 가장 먼저 해체가 진행될 고리 1호기에서 나오는 저준위 방사성폐기물의 양은 200L 드럼으로 14,500개에 해당할 것으로 예상되며, 이를 위한 처분 비용은 한수원이 제시한 원전 1기 해체 비용인 6,347억원의 40%에 해당된다. 이 비용을 줄이기 위해선 방사화된 콘크리트나 금속부분을 효율적으로 제거하는 제염기술이 필요하다. 연구용 원자로인 트리가마크-II 및 III와 우라늄변환시설을 해체한 경험이 있지만 소규모 저방사능 시설에만 국한되어 있을 뿐, 원전처럼 방사성물질 농도가 높은 대규모 시설에 대한 경험이 부족하다. 따라서 고리 1호기 해체 시 적용할 제염기술에 대해 다양한 방법으로 검토할 필요가 있다고 생각된다. 이에 본 연구에서는 현재 국내외에서 개발 및 실증된 제염기술에 대해 알아보았다.