A cross docking operation involves multiple inbound trucks that deliver items from suppliers to a distribution center and multiple outbound trucks that ship items from the distribution center to customers. Based on customer demands, an inbound truck may have its items transferred to multiple outbound trucks. Similarly, an outbound truck can receive its consignments from multiple inbound trucks. The objective of this study is to find the best truck spotting sequence for both inbound and outbound trucks in order to minimize total operation time of the cross docking system under the condition that multiple visits to the dock by a truck to unload or load its consignments is allowed. The allocations of the items from inbound trucks to outbound trucks are determined simultaneously with the spotting sequences of both the inbound and outbound trucks.
크로스도킹은 물류센터의 운영 개념으로써 입고트럭에 의해 배달된 물품이 재고로써 보관됨이 없이 즉시 고객의 수요에 따라 재분류되어 출고트럭에 적재되어 고객에게 배달되는 프로세스로 구성된다. 본 연구에서는 임시보관 장소를 보유한 크로스도킹 시스템의 총 운영시간을 최소화하기 위한 입고 트럭과 출고 트럭의 일정계획 수립을 위한 수학적 모델을 개발하였다. 본 연구에서 개발한 모델의 적용으로 물류센터 내에서의 자재 취급 빈도 및 시간이 감소하여 제품 손상을 최소화
The docking and recharging system for a mobile robot must guarantee the ability of the mobile robot to perform its tasks continuously without human intervention. In this paper, two docking mechanisms are proposed with localization error-compensation capability for the auto recharging system. Friction forces or magnetic forces are used between the docking parts of the docking module and those of the docking station. In addition, an auto recharging system is developed to control the power. Since the system is modularized, it can easily be adapted to other robots.