Background: To improve muscle flexibility, static stretch is the most common type and is considered safe and effective for improving overall flexibility of muscles. During the stretch, the intensity is more likely to be determined by the degree of an athlete’s pain and practitioner’s skills rather than quantitative measures of stretch. It is necessary to determine the optimal intensity for the stretch. Objects: The purpose of this study is to explore the relationship between hand held dynamometer (HHD) and verbal rating scale (VRS) in comparison of the effects of continuance time on active (walking) and inactive (sitting) movement after static stretch. Methods: A cross-sectional study was conducted with a sample (n=62) recruited from a university. Participants were randomly assigned to 2 different groups (n=31 for each group) based on participants’ positions either remaining in sitting or freely walking around for a series of re-assessments. Data was collected at pre-warm up, pre-stretch, post-stretch, and additional assessments at the time of 3, 6, 9, 12, 15, 20 and 30 minutes after the stretch. Results: Relationship between VRS and HHD scores represents very weak correlation (Spearman’s p=-.16, p>.05). Pearson’s correlation analysis was conducted following the logarithmic transformation of the two scores. Pearson’s correlation after the transformation still showed a very low relationship and a poor linear relationship between the two scores (Pearson’s r=-.18, p>.05). Conclusion: The optimal intensity for stretch cannot be solely determined by the subjective pain perception. The objective measurement such as HHD could be used in conjunction with the pain perception.
The purpose of this study was to assess the agreement of manual muscle testing (MMT) and test-retest reliability of a hand held dynamometer for the posterior gluteus medius muscle, with and without lumbar stabilization, using a pressure biofeedback unit for patients with low back pain. The pressure biofeedback unit was used to minimize the substitute motion of the lumbopelvic region during hip abduction in patients lying on their side. Fifteen patients with low back pain participated in this study. A tester determined the MMT grades of the posterior gluteus medius with and without the pressure biofeedback unit. Active hip abduction range of motion with an inclinometer and the strength of their posterior gluteus medius using a hand held dynamometer were measured with and without the pressure biofeedback unit in the MMT position. The agreement of the grade of muscle strength in the MMT, and intra-rater reliability of both the active hip abduction range of motion and the strength of posterior gluteus medius were analyzed using the weighted kappa and intraclass correlation coefficient (ICC), respectively. The agreement of MMT with the pressure biofeedback unit (weighted kappa=.92) was higher than the MMT (weighted kappa=.34)(p<.05). The inclinometer with pressure biofeedback unit measurement of the active hip abduction range of motion had an excellent intra-rater reliability (ICC=.90). Also, the hand held dynamometer with pressure biofeedback unit measure of strength of the posterior gluteus medius had a good intra-rater reliability (ICC=.85). Therefore, the test for muscle strength with pressure biofeedback unit will be a reliable method for the determination of the MMT grades or amount of posterior gluteus medius muscle strength and the measurement of the range of motion for hip abduction in patients with low back pain.
본 논문에서는 저연령층 어린이들의 뇌 운동중추에 대한 효과적인 훈련방법으로 악력계 제어 시스템을 이용한 게임을 개발하였다. 키보드나 마우스와 같은 기존의 인터페이스 방식과는 달리 악력계를 사용하여 측정되는 악력수치에 의해 게임을 플레이하는 것으로, 악력의 등척성, 등장성 훈련을 할 수 있게 하였다. 또 단순히 반복적인 악력훈련으로 인한 피로감이나 훈련에 대한 흥미가 떨어지는 것을 4가지 미니게임과 교육적인 콘텐츠를 제공함으로써 체계적인 악력 훈련 및 교육적인 기능성 게임에 대한 새로운 모델을 제시하였다