전 세계적으로 에너지 수요증가와 유가 불안정 현상이 지속됨에 따라 이를 대체할 방안으로 신재생에너지 사용에 대한 관심이 높아지고 있으며 신재생 에너지의 수요가 늘어날 것으로 예측된다. 우리나라는 신재생에너지 공급의무화 제도(Renewable & Portfolio Standards; RPS)를 2012년부터 도입하여 50만kW 이상의 발전소는 총 발전량에 대한 신재생에너지를 사용한 전력공급율을 2012년 2%를 시작으로 2024년까지 10%로 실시할 계획이다. 최근 RPS 의무이행자인 발전사들의 신재생에너지발전원 중 바이오 비율이 70%에 이르며 이는 바이오매스 발전이 투자비 및 연료구매 비용이 낮고 운영효율성이 높아 RPS 이행이 쉽기 때문이다. 하지만 바이오매스로의 쏠림현상은 국내 목재시장의 유통구조에 악영향을 미치고 있으며 바이오매스발전 급증으로 폐목재 수요도 동반 증가하면서 재활용 가능한 목재까지 연료로 사용되고 있는 실정이다. 최근 팜오일 바이오매스는 인도네시아 산업을 이끌 잠재력 있는 자산으로 대두되어 왔으며, 2013년 기준 1억 4,200만 톤의 팜오일과 이에 따른 6,654만톤의 팜 부산물이 생산되고 있어 이를 연료화시 국내에서 거론되고 있는 바이오매스 문제를 해결할 수 있는 신재생에너지원으로써 확보가 가능할 것으로 판단된다. 본 연구에서 대상으로 하는 EFB는 팜오일 생산과정에서 발생되어 일부분만 비료로 사용되고 처리되지 못해 야적되어 있는 것을 사용하였다. 3ton/day급 Pilot급 일체형 다단건조 탄화기를 사용하여 고열량인 EFB(저위발열량 : 4,320 kcal/kg)를 반탄화 고형연료로 생산하기 위해 반탄화 온도(200~300℃)와 시간(30~60분)을 고려하여 고형연료 생산량 및 발열량에 미치는 영향에 대하여 검토하였다. 반탄화 온도 변화에 따라 EFB의 저열량휘발성분의 감소와 탄소함량의 증가로 발열량(5,150 kcal/kg)이 증가하는 경향을 나타나는 것으로 분석되었다. 본 연구로 최적 EFB 반탄화 고형연료 생산인자를 도출함에 따라 경쟁력 있는 바이오매스 신재생에너지로 확보 될 것으로 전망된다.
The utilization of renewable energy will be an inevitable situation in the future because of the acceleration of climate change and depletion of fossil fuels. Waste and biomass are major sources of renewable energy. In the near future, biomass will become the main resource of renewable energy in the world. However, in case of Korea, obtaining a stable supply of biomass is difficult. To overcome this problem, we need to import biomass from other countries. Palm empty fruit bunch (EFB) is known to be a good biomass resource, which is treated by either landfill or incineration in Indonesia and Malaysia. EFB could be used as feedstock for gasification for energy recovery as a gas fuel. Generally, biomass gasification has more stable operation than waste gasification. Nevertheless, biomass gasification generates lots of tar in syngas because of the lignin content in biomass, which may cause problems for gas engines and other processes. In this study, gasification experiments as well as qualitative analysis were conducted for determining syngas characteristics with tar content. Tar sampling and analysis were performed under various conditions by changing the flow rate, sampling time, and sampling gas flow. Measuring the tar content in syngas during the gasification process was also proposed
바이오매스는 효과적으로 바이오 연료를 얻을수 있는 신재생에너지로서 대체에너지로 각광 받고 있다. 특히, 본 연구에서 사용된 팜 부산물(EFB)은 주로 말레이시아, 인도네시아 등에서 팜 오일 생산 공정의 부산물로, 팜열매로부터 증기를 이용해 팜 오일을 추출한 후에 발생되는 부산물로 알려져 있으며, 팜 열매의 약 20%가 EFB로 배출된다. EFB를 포함한 바이오매스에 대해 국내에서는 2030년까지 바이오에너지 공급을 전체 에너지의 3.4%로 그 목표를 설정 하였으나 국내에서는 바이오매스 수급이 어려운 실정이다. 이에 따라 본 연구에서는 이러한 바이오매스 수급 문제와 효율 증대를 해결하기 위해 이미 가스화 공정에 적용가능성이 입증된 화석 연료인 석탄과 바이오매스인 EFB를 혼소 가스화 연구를 진행하였으며, 혼소가스화의 효율성을 확인하기 위해 EFB가스화 공정과 특성을 비교하였다. 본 연구에서 사용된 반응기는 유동층 반응기로서 BFB(Bubbling Fludized Bed) 조건으로 진행 되었으며, EFB와 석탄의 혼소 가스화 적용 가능성을 평가하기 위해 EFB의 기초특성분석을 실시하였다. 기초특성분석에는 원소분석과 공업분석, 발열량 분석을 실시하였으며, 원소분석의 결과 탄소 41.81%, 수소 5.73%, 산소 37.36%, 질소 0.84% 로 분석 되었으며, 발열량(고위발열량 기준)은 3,930 kcal/kg 으로 나타났으며, 마지막으로 공업 분석의 결과 수분 9.03%, 휘발분 64.95%, 고정탄소 19.48%, 회분 5.94%의 함량을 보였다. EFB의 가스화의 각 조건의 합성가스 조성, 건조가스 수율, 냉가스 효율결과를 비교하였을 때, 최적 온도 조건은 900 ~ 1,000℃, ER비는 0.6 으로 나타났다. 이에 비해 혼소가스화의 최적 조건 도출의 경우에도 EFB 가스화 최적 조건 도출과 마찬가지로 비교하였을 때, 온도의 경우 EFB 가스화 반응에 비해 고온에서 최적조건을 보였으며, EFB와 석탄의 혼합비는 석탄의 비율을 10%, 20%, 30% 로 총 3가지 조건을 비교하였다. 이 결과 가장 경제적이며 효율이 있는 혼합비의 조건은 석탄 20% 혼합으로 나타났다. 이러한 결과를 토대로 바이오매스인 EFB와 화석연료 중하나인 석탄의 혼소 가스화 가능성을 판단할 수 있었으며, 최적 조건을 도출 할 수 있었다.
바이오매스는 화석연료의 사용으로 인한 온실가스 및 에너지고갈 문제를 모두 해결 할 수 있는 탄소중립적인 에너지원으로서 주목을 받고 있다. 세계 2대 팜오일 생산국인 말레이시아의 경우 팜오일을 생산한 후 발생되는 농업부산물이 총 바이오매스의 85% 이상을 차지하는 것으로 알려져 있다. 2010년 말레이시아에서 발생되는 팜 바이오매스는 약 8,000만 톤이며, 2020년까지 약 1억1,000만 톤까지 늘어날 것으로 전망되고 있다. 하지만 발생량의 대부분은 소각 또는 매립이 되고 있는 실정이며, 일부만이 퇴비 및 펠렛으로 이용되고 있어 말레이시아 정부는 다각도로 활용방안을 모색 중이다. 국내의 경우, RPS(Renewable Portfolio Standard, 신재생에너지 공급의무화)제도의 시행으로 인한 대체에너지원 확보가 필요한 상황이지만, 국내 바이오매스는 지역 및 월별 발생량의 편차로 인하여 원료 수급 및 활용 등에 문제점을 가지고 있다. 해외로부터 낮은 밀도와 높은 함수율의 바이오매스를 수급할 경우 운송비가 전체비용의 40% 이상을 차지하므로, 에너지 밀도가 높은 바이오매스의 수급이 필요한 상황이다. 반탄화란 반응온도 200 ~ 300℃ 범위에서 무산소 조건에서 일어나는 열화학적인 공정이며, 부분적인 탈휘발화 반응 및 열분해 반응이 주반응인 공정으로, 바이오매스의 에너지 밀도를 증가시키는 공정이다. 본 연구에서는 간접가열방식의 1kg/h급 로타리킬른 반응기를 이용하여 EFB의 반탄화 특성에 대한 반응온도의 영향을 살펴보았다. 반응온도를 250, 270 및 300℃로 증가시킨 결과 가스와 액체 생성물의 수율은 증가하는 반면 고체생성물의 수율은 감소하는 것으로 나타났다.
Korea has adopted a federal renewable electricity standard that begins at 2% in 2012 and requires companies to source 10% of their electricity from renewables by 2022. Therefore the interest in the use of biomass as a renewable energy resource is growing. By importing biomass, the Korea, which produces too little biomass of its own, can meet the needs of the renewable energy sectors. In the case of import biomass, it will cost a great deal on the transportation and logistics of biomass materials. Therefore new research and development on the biomass fuel with high energy density is needed to reduce logistics cost on transportation of the biomass fuel. Torrefaction is a thermochemical treatment process of biomass at temperatures ranging between 200 and 300oC. Typically, 70% of the mass is retained as a char product, containing 90% of the initial energy content. Torrefaction experiments on samples of EFB were performed in a fixed bed reactor to determine the effect of operation variables such as reaction temperature (205-310oC), reaction time (20-40 min) and air ratio (0-0.18) on char yield and characteristics. Increase of the torrefaction temperature led to a decrease of the yield of the char. The heating value of char increased with the increase of the reaction temperature, because the carbon content increased and hydrogen and oxygen content decreased. The yield of char decreased with increasing air ratio. This suggested that oxidation of EFB occurred during torrefaction in the presence of oxygen.