제조공정에서 사용되어 지는 SPC(Statistical Process Control)관리 기법은 가피원인을 탐지하여 변동을 감소시키는 통계적 공정관리 시스템이다. SPC의 대표적인 관리 기법으로는 Shewhart관리도, Cusum관리도, EWMA관리도가 있으며 이러한 관리 기법들은 공정을 보다 안정적으로 관리 할 수 있도록 유지 및 예측하는데 사용 되어 진다. 하지만 제조 공정의 유형에 따라 샘플링 방법, 관리한계선 등을 다양하게 설정하여 보다 효율적인 관리를 모색하고 있다. 공정 형태에 따라 다양한 관리 방법과 분석 결과가 나타난다. 일반적으로 Xbar-R 관리도와 같은 Shewhart 관리도를 사용하지만 Batch 단위의 공정, 연속 공정의 라인에서 사용되기에는 부분적인 한계를 보이고 있다.
본 논문에서는 일반적인 관리도와 공정 변화에 민감하게 반응 할 수 있는 누적합 관리도와 지수가중치이동평균 관리도를 비교해 보고 작은 변동에 대한 탐지 능력이 우수한 지수가중치이동평균 관리도에 대한 연구동향과 사례를 분석하여 제조 공정에 적합한 관리 방법을 모색하고자 한다.
When monitoring an instrumental process, one often collects a host of data such as characteristic signals sent by a sensor in short time intervals. Characteristic data of short time intervals tend to be autocorrelated. In the instrumental processes often the practice of adjusting the setting value simply based on the previous one, so-called ‘adjacent point operation’, becomes more critical, since in the short run the deviations are harder to detect and in the long run they have amplified consequences. Stochastic modelling using ARIMA or AR models are not readily usable here. Due to the difficulty of dealing with autocorrelated data conventional practice is resorting to choosing the time interval where autocorrelation is weak enough then to using I-MR control chart to judge the process stability. In the autocorrelated instrumental processes it appears that using the Shewhart chart and the time interval data where autocorrelation is relatively not existent turns out to be a rather convenient and very useful practice to determine the process stability. However in the autocorrelated instrumental processes we intend to show that one would presumably do better using the EWMA control chart rather than just using the Shewhart chart along with some arbitrarily intervalled data, since the former is more sensitive to shifts given appropriate weights.
제조공정에서 사용되어 지는 SPC(Statistical Process Control)관리 기법은 가피원인 을 탐지하여 변동을 감소시키는 통계적 공정관리 시스템이다. SPC의 대표적인 관리 기법으로는 Shewhart관리도, Cusum관리도, EWMA관리도가 있으며 이러한 관리 기법 들은 공정을 보다 안정적으로 관리 할 수 있도록 유지 및 예측하는데 사용 되어 진다. 본 논문에서는 일반적으로 사용되어 지는 Shewhart관리도와 공정 예측에 유리한 EWMA 관리도에 대해 연구해보고 공정변화에 민감하게 반응하는 EWMA 관리도의 적용 사례를 제시하고자 한다.
When the production run is short and process parameters change frequently, it is difficult to monitor the process using traditional control charts. In such a case, the coefficient of variation (CV) is very useful for monitoring the process variability. Th
When the production run is short and process parameters change frequently, it is difficult to monitor the process using traditional control charts. In such a case, the coefficient of variation (CV) is very useful for monitoring the process variability. The CV control chart is an effective tool to control the mean and variability of process simultaneously. The CV control chart, however, is not sensitive at small shifts in the magnitude of CV. The CV-EWMA(exponentially weighted moving average) control chart which was developed recently is effective in detecting a small shifts of CV. Since the CV-EWMA control chart scheme can be viewed as a weighted average of all past and current CV values, it is very sensitive to small change of mean and variability of the process. In this paper, we propose an FIR(Fast initial response) CV-EWMA control chart to improve the sensitivity of a CV-EWMA scheme at process start-up or out-of-control process. Moreover, we suggest the values of design parameters and show the results of the performance study of FIR CV-EWMA control chart by the use of average run length( ). Also, we compared the performance of FIR CV-EWMA control chart with that of the CV-EWMA control chart and we found that the CV-EWMA control chart gives longer in-control ARL and much shorter out-of-control ARL.
The control chart is widely used statistical process control(SPC) tool that searches for assignable cause of variation and detects any change of process. Generally, ?맴詠? control chart and ?맴詠? are most frequently used. When the production run is short and