Diapause duration of Paratlanticus ussuriensis is prolonged as an egg that enter both initial and final diapause stgaes. Environmental conditions, such as temperature, can modify the duration of initial diapause. Eggs enter initial diapause at 20℃, but continued early embryonic development at 30℃. Final diapause at a fully developed embryonic stage is obligatory regardless of temperature conditions. To determine temperature effects on initial diapause mechanism of P. ussuriensis eggs, we compared weights, DNA and RNA amounts of eggs incubated at either 20℃ or 30℃ for 50 days after oviposition. We identified small heat shock protein (shsp), heat shock protein 90 (hsp90) and three heat shock protein 70 (hsp70a, hap70b, hsp70c) genes of P. ussuriensis and determined those expression levels at different temperature conditions. The levels of shsp, hsp70a, hsp70b and hsp90 was not detectable until 20 days after oviposition at both temperature conditions, but highly increased at 50 and 60 days when incubated at 30℃. In contrast, hsp70c level was rapidly peaked at 20 days after oviposition, which is the time of initial diapause entrance. We analysis of temperature sensitivity of P. ussuriensis eggs. Hsp70a is expressed after the first cold treatment of mature eggs. Hsp70b is highly expressed just before hatching. Both shsp and hsp70c was highly expressed at the heat shock condition into immature egg stage. Our results suggest that high temperature breakdown initial diapause and one hsp gene, such as hsp70c, may be involved into the mechanism of initial diapause of P. ussuriensis eggs.
Paratlanticus ussuriensis enter prolonged diapause at an egg stage. Environmental conditions, such as temperature, can modify the diapause duration at initial diapause. Eggs enter initial diapause at 20℃, but continued early embryonic development at 30℃. Final diapause at a fully developed embryonic stage is obligatory regardless of temperature conditions. To determine temperature effects on diapause mechanism of P. ussuriensis eggs, we compared weights, DNA and RNA amounts of eggs incubated at either 20℃ or 30℃ for 50 days after oviposition. Both egg weight and total amount of DNA were constant at 20℃ but gradually increased at 30℃. However, total RNA level was rapidly increased at 15 days-old eggs at 30℃ and maintained high levels during further period whereas its level was constant at 20℃. In addition, we identified three heat shock protein 70 (hsp70a, hap70b, hsp70c) genes of P. ussuriensis and determined those expression levels at different temperature conditions. The levels of hsp70a and hsp70b was not detectable until 20 days after oviposition at both temperature conditions, but highly increased at 50 and 60 days when incubated at 30℃. In contrast, hsp70c level was rapidly peaked at 20 days after oviposition, which is the time of initial diapause entrance. Our results suggest that high temperature breakdown initial diapause and a certain hsp gene, such as hsp70c, may involve in the initial diapause mechanism of P. ussuriensis eggs.
Temperature effects on diapause termination of Paratlanticus ussuriensis eggs were studied by measuring embryonic development and hatching rates at various conditions of indoor chilling and overwintering temperatures. Diapausing eggs of P. ussuriensis did not hatch at continued incubation at 25℃ and even after chilling for once at either 5℃ or 10℃ for 30, 45 and 60 days. In addition, double chillings at 5℃ with a 90 days interval at 25℃ did not induce hatching of diapausing eggs. However, double chillings at 10℃ induced hatching at 3.6~26.7%. When eggs were incubated at 25℃ after chilling for once at 5℃ for various periods, those weights were not changed but those chilled at 10℃ gradually increased to approximately 1.5 times. When 60-days-old eggs were artificially deposited under the soil at three different mountain sites in September 2007, the hatching rates of the first-overwintered eggs were 11.3, 3.5 and 4.1% and those of the second-overwintered eggs were 25.1, 21.6 and 0.4% at Hoepori, Bitanri and Hwasanri, respectively. Most eggs were hatched from mid-March to mid-April but little bit earlier in southern regions. During the hatching period soil temperatures in three tested locations were around 8 to 12℃. In overall, diapausing eggs of P. ussuriensis were greatly influenced by chilling temperature conditions and those repeated cycles, and may required overwintering for one or two times to hatch for the post-embryonic development.
We investigated starvation of hatching larvae, occasional artificial hatching and incubation method to establish year-round rearing of the wild silkmoth, Antheraea yamamai. In the test of starvation of hatching larvae for brushing at a time, the survival rate of the fourth instar of larvae starved for 1 day after hatching in 25℃ and 5℃ was 83.3% and 96.0%, respectively. The result represents that the survival rate is high at low temperature during starvation. In the occasional artificial hatching test for multi-times rearing of A. yamamai, the useful hatchability is high at 5℃ in case of preserving eggs for 2 months from incubation time, and at both 2.5℃ and 0℃ in case of over 6 months. A new incubation method with pre-incubation at 15℃ and 24 D photoperiod showed high hatchability about 80% for only 2 days compared with hatching for 5-6 days in traditional incubation method with the preservation at 25℃.