검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 211

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The reversible metal electrodeposition (RME) process is used to prepare electrochromic mirrors with reflectivetransparent optical states, by depositing metal particles on transparent conductive substrates. These RME based devices can be used in smart windows to regulate indoor temperatures and light levels, serving dual purposes as lighting elements. Commercialization efforts are focused on achieving large-scale production, long-term durability, and a memory effect that maintains coloration without applied voltage. Enhancing durability has received particular attention, leading to the development of electrochromic mirrors that employ gel electrolytes, which are expected to reduce electrolyte leakage and improve mechanical stability compared to traditional liquid electrolyte devices. The gel electrolytes offer the additional advantage of various colors, by controlling the metal particle size and enabling smoother, denser formations. In this study, we investigated improving the durability of RME devices by adding polyvinyl butyral (PVB) to the liquid electrolyte and optimizing the concentration of PVB. Incorporating 10 % PVB resulted in excellent interfacial properties and superior electrochromic stability, with 92.6 % retention after 1,000 cycles.
        4,000원
        7.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A series of ZIF-67-C-IL catalysts were prepared using ZIF-67 and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ([ BMIM]NTf2) ionic liquid as precursors. The structure of the catalysts was characterized by XRD, TEM, SEM and XPS. The catalytic performance of the catalysts for the oxygen reduction reaction (ORR) was evaluated in a three-electrode system. The results confirmed that the high-temperature treatment of the precursors resulted in the formation of N, S codoped carbon-encapsulated Co9S8 nanoparticles. To create N, S co-doped carbon coated Co9S8 nanoparticle catalysts, ionic liquids are used as sulfur and nitrogen sources. The catalytic activity of ORR can be improved using N, S co-doped carbon to prevent the aggregation of Co9S8 nanoparticles. Graphitized and N, S co-doped carbon shells are optimal for achieving high activity stability. Optimal 600-ZIF-67-C(1:1.5)-30IL catalytic activity was observed for ORR. The half-wave potential of ORR was 0.88 V vs. RHE in 0.1 mol L− 1 KOH, with a limit current density of 4.70 mA cm− 2. Similar ORR electrocatalytic activity was observed between this catalyst and commercial Pt/C (20 wt%).
        4,000원
        8.
        2024.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, NASICON-type Li1+XGaXTi2-X(PO4)3 (x = 0.1, 0.3 and 0.4) solid-state electrolytes for all-solid-state batteries were synthesized through the sol-gel method. In addition, the influence on the ion conductivity of solid-state electrolytes when partially substituted for Ti4+ (0.61Å) site to Ga3+ (0.62Å) of trivalent cations was investigated. The obtained precursor was heat treated at 450 °C, and a single crystalline phase of Li1+XGaXTi2-X(PO4)3 systems was obtained at a calcination temperature above 650 °C. Additionally, the calcinated powders were pelletized and sintered at temperatures from 800 °C to 1,000 °C at 100 °C intervals. The synthesized powder and sintered bodies of Li1+XGaXTi2-X(PO4)3 were characterized using TGDTA, XRD, XPS and FE-SEM. The ionic conduction properties as solid-state electrolytes were investigated by AC impedance. As a result, Li1+XGaXTi2-X(PO4)3 was successfully produced in all cases. However, a GaPO4 impurity was formed due to the high sintering temperatures and high Ga content. The crystallinity of Li1+XGaXTi2-X(PO4)3 increased with the sintering temperature as evidenced by FE-SEM observations, which demonstrated that the edges of the larger cube-shaped grains become sharper with increases in the sintering temperature. In samples with high sintering temperatures at 1,000 °C and high Ga content above 0.3, coarsening of grains occurred. This resulted in the formation of many grain boundaries, leading to low sinterability. These two factors, the impurity and grain boundary, have an enormous impact on the properties of Li1+XGaXTi2-X(PO4)3. The Li1.3Ga0.3 Ti1.7(PO4)3 pellet sintered at 900 °C was denser than those sintered at other conditions, showing the highest total ion conductivity of 7.66 × 10-5 S/cm at room temperature. The total activation energy of Li-ion transport for the Li1.3Ga0.3Ti1.7(PO4)3 solidstate electrolyte was estimated to be as low as 0.36 eV. Although the Li1+XGaXTi2-X(PO4)3 sintered at 1,000 °C had a relatively high apparent density, it had less total ionic conductivity due to an increase in the grain-boundary resistance with coarse grains.
        4,000원
        9.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Achieving cost-effective and defect-free graphene sheets is highly desirable for sensor devices. Aiming this, few-layer graphene (~ 3) sheets are prepared by an electrochemical exfoliation with [NMP] [ HSO4] electrolyte (i.e., Bronsted acidic ionic liquid). A novel approach for the effective exfoliation of graphene sheets is demonstrated by (i) simultaneously applying a constant potential through an electrochemical cell (with different electrolyte concentrations) and (ii) together with sonication. The exfoliated graphene sheets are characterized through state-of-the-art techniques and sprayed on a glass substrate at optimum conditions. Thus, the transparent conducting sensor device is fabricated with a suitable contact electrode and used for ammonia vapor sensing and the sensor performances are highly dependent on the concentration of the ionic liquid used during the electrochemical exfoliation. The sensing response and limit of detection for the exfoliated graphene-based film were calculated as 3.56% and 432 ppb, respectively. Further studies indicated that the fabricated sensors are more selective towards ammonia molecules with quick response and recovery times.
        4,200원
        10.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In zinc-air batteries, the gel polymer electrolyte (GPE) is an important factor for improving performance. The rigid physical properties of polyvinyl alcohol reduce ionic conductivity, which degrades the performance of the batteries. Zinc acetate is an effective additive that can increase ionic conductivity by weakening the bonding structure of polyvinyl alcohol. In this study, polymer electrolytes were prepared by mixing polyvinyl alcohol and zinc acetate dihydride. The material properties of the prepared polymer electrolytes were analyzed by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Also, Electrochemical impedance spectroscopy was used to calculate ionic conductivity. The electrolyte resistances of GPE, 0.2 GPE, 0.4 GPE, and 0.6 GPE were 0.394, 0.338, 0.290, and 0.213 Ω, respectively. In addition, 0.6 GPE delivered 0.023 S/cm high ionic conductivity. Among all of the polymer electrolytes tested, 0.6 GPE showed enhanced cycle life performance and the highest specific discharge capacity of 11.73 mAh/cm2 at 10 mA. These results verified that 0.6 GPE improves the performance of zinc-air batteries.
        4,000원
        11.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 산화 방지 특성이 있는 가리워진 아민기를 함유한 산화 그래핀(hindered amine grafted graphene oxide, HA-GO)을 합성하여 이를 도입한 나피온(Nafion) 기반의 복합 막을 제조한 후 고분자 전해질 막 연료전지 시스템에 응용하였다. HA-GO는 4-아미노-2, 2, 6, 6-테트라메틸-4-피페리딘(4-amino-2, 2, 6, 6-tetramethyl piperidine)에 존재하는 아민 기와 GO 표면에 존재하는 에폭시기의 개환 반응을 통해 제조하였으며, 합성된 HA-GO의 함량을 달리한 복합 막을 제조하여 순수 Nafion 막과 성능 특성을 비교하였다. HA-GO가 첨가된 복합 막은 Nafion 단일 막에 비해 기계적 물성, 화학적 안정성 및 수소이온 전도 특성이 향상되었다. 특히 HA-GO의 산화 방지 특성으로 인해 HA-GO가 첨가된 복합 막은 펜톤 평가 (Fenton’s test) 이후 수소이온 전도도의 유지 특성이 Nafion 단일 막에 비해 큰 폭으로 향상된 것을 확인할 수 있었다.
        4,200원
        12.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        직접 메탄올 연료전지(direct methanol fuel cell, DMFC)는 연료의 개질 없이 메탄올 연료를 공급하여 수소이온과 전자 생성을 통해 전류를 생산하는 에너지 변환 장치이다. 현재 DMFC에 적용되고 있는 고분자 전해질 막(polymer electrolyte membrane, PEM)은 높은 수소이온 전도도와 물리화학적 안정성을 갖는 과불소화계 이오노머를 활용한 PEM이지만, 높 은 메탄올 투과율과 분해 시 발생되는 환경 오염 물질 등의 문제로 인해 신규 소재 개발이 요구되고 있다. 최근 들어, 과불소 화계 이오노머에 비해 낮은 연료 투과율 및 우수한 물리화학적 안정성을 갖는 탄화수소계 고분자 기반 PEM을 DMFC에 적 용하는 연구들이 보고되고 있다. 본 총설에서는 탄화수소계 고분자 기반 PEM 중 1) 친수성/소수성 영역의 뚜렷한 나노 상분 리 구조를 나타내는 가지형 공중합체를 합성하여 수소이온 전도성과 메탄올의 선택도를 향상시킨 연구, 2) 제막 단계에서 가 교 구조를 도입하여 메탄올 투과율을 감소시키고 치수 안정성을 향상시킨 연구, 3) 유/무기계 첨가제 및 다공성 지지체를 도 입하여 성능을 개선한 복합 막 개발 연구에 대해 소개하고자 한다.
        5,400원
        1 2 3 4 5