검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2023.10 구독 인증기관·개인회원 무료
        Two bacterial genera, Xenorhabdus and Photorhabdus, are mutually symbiotic to the entomopathogenic nematodes, Steinernema and Heterorhabditis, respectively. Success parasitism of the nematode-bacterial complex depends on the host immunosuppression by the bacteria via their secondary metabolites. Lrp (Leucine-responsive regulatory protein) is a global transcriptional factor of the bacteria and play a crucial role in the parasitism. However, its regulatory targets to suppress the insect immunity were not clearly determined. This study investigated the regulatory target genes and subsequent secondary metabolites by Lrp in Xenorhabdus hominickii. Lrp expression occurred at the early infection stage in a target insect, Spodoptera exigua. Among eight non-ribosomal peptide synthetase (NRPS1-NRPS8) genes, six gene (NRPS3-NRPS8) expressions were positively correlated with Lrp expression in the infected larvae of S. exigua. Exchange of the Lrp promoter with an inducible promoter altered the production of the secondary metabolites along with alteration of the NRPS expression levels. The immunosuppressive activities of X. hominickii depended on the Lrp expression level. The metabolites produced by Lrp expression possessed the eicosanoid-biosynthesis inhibitors and hemolytic factors. A cyclic dipeptide (= cPF) was produced under Lrp control and identified to inhibit phospholipase A2 activity of S. exigua in a competitive inhibitory manner. These results suggest that Lrp is a global transcriptional factor of X. hominickii and plays crucial role in insect immunosuppression by modulating NRPS expressions.
        2.
        2013.10 구독 인증기관·개인회원 무료
        A phase variation has been reported in an entomopathogenic bacterium, Xenorhabdus nematophila. Compared to a wild type primary form, a secondary form usually lose several physiological and biochemical characters. This study showed that the phase variation of X. nematophila caused a significant alteration in its immunosuppressive activity and subsequent entomopathogenicity. A secondary form of X. nematophila was detected in laboratory colonies and exhibited significant differences in dye absorption and entomopathogenicity. In addition, the secondary form was different in production of eicosanoid-biosynthesis inhibitors (EBIs) compared to the primary form of X. nematophila. Production of oxindole and p-hydroxypropionic acid was significantly reduced in the culture broth of the secondary form of X. nematophila. The reduced EBI production resulted in significant suppression in the inhibitory effects on a cellular nodule formation and phenoloxidase activity. Culture broth of the primary form of X. nematophila significantly more enhanced the pathogenicity of Bacillus thuringiensis (Bt) than the culture broth of the secondary form. Furthermore, this study developed a high efficient ‘Dual Bt-Plus’ to control both lepidopteran insect pests of Plutella xylostella and Spodoptera exigua by mixing two effective Bt strains along with the addition of potent bacterial metabolites or 100-fold concentrated X. nematophila culture broth.
        3.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
         ,  , The entomopathogenic bacterium, Xenorhabdus sp., was isolated from an entomopathogenic nematode, Steinernema monticolum. When these bacteria were injected into the hemocoel of the diamondback moth, Plutella xylostella, they caused significant mortality. However, the bacterium was not pathogenic when it was administered orally. This study showed that Xenorhabdus sp. significantly enhanced oral pathogenicity of Bacillus thuringiensis (Bt) against the last instar larvae of P. xylostella. Different ratios of culture broth of Xenorhabdus sp. and Bt showed significantly different pathogenicities against P. xylostella. In field tests, the optimal bacterial mixture significantly enhanced control efficacy against P.xylostella compared to Bt treatment alone. These results demonstrated that Xenorhabdus sp. culture broth can be developed as a potent biopesticide by enhancing the insecticidal efficacy of Bt.
        4,000원
        4.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An entomopathogenic bacterium, Photorhabdus temperata ssp. temperata (Ptt), suppresses insect immune responses and facilitates its symbiotic nematode development in target insects. The immunosuppressive activity of Ptt enhances pathogenicity of various microbial pesticides including Bacillus thuringiensis (Bt). This study was performed to select a cheap and efficient bacterial culture medium for large scale culturing of the bacteria. Relatively cheap industrial bacterial culture media (MY and M2) were compared to two research media, Luria-Bertani (LB) and tryptic soy broth (TSB). In all tested media, a constant initial population of Ptt multiplied and reached a stationary phase at 48 h. However, more bacterial colony densities were detected in LB and TSB at the stationary phase compared to two industrial media. All bacterial culture broth gave significant synergism to Bt pathogenicity against third instars of the diamondback moth, Plutella xylostella. Production of bacterial metabolites extracted by either hexane or ethyl acetate did not show any significant difference in total mass among four culture media. Reverse phase HPLC separated the four bacterial metabolites, which were not much different in quantities among four bacterial culture broths. This study suggests that two industrial bacterial culture media can be used to economically culture Ptt in a large scale.
        4,000원
        5.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A bacterial colony was isolated from the gut of the bean bug, Riptortus clavatus. From morphological and biochemical tests, the bacterial isolate showed the highest similarity to Staphylococcus succinus. DNA sequence of 16S rRNA gene of the bacterium supported the identification. Oral administration of penicillin G to adults of R. clavatus gave a dose-dependent mortality of adults of R. clavatus to adults along with significant decrease of the bacterial population in the gut. Similarly, three metabolites (benzylideneacetone, proline-tyrosine, and acetylated phenylalanine-glycine-valine) derived from an entomopathogenic bacterium, Xenorhabdus nematophila, also inhibited growth of the gut bacterial population and gave significant mortalities to R. clavatus. These results suggest that a gut bacterial population classified as Staphylococcus sp. is required for survival of R. clavatus and that the three bacterial metabolites had toxic effects on the bugs due to their antibacterial properties.
        4,000원
        6.
        2009.05 구독 인증기관·개인회원 무료
        Two entomopathogenic bacteria, Xenorhadus nematophila and Photorhabdus temperata temperata, are known to suppress immune responses of target insects by inhibiting eicosanoid biosynthesis. This study analyzed these bacterial metabolites in their effects on hemocyte-spreading behavior of the beet armyworm, Spodoptera exigua. Both bacterial culture broth significantly inhibited the hemocyte-spreading behavior, at which the culture broth derived from the stationary growth phase had the most potent effect. Three identified eicosanoid synthesis inhibitors (benzylideneacetone, PY and Ac-FGV) impaired the hemocyte-spreading behavior of S. xigua, at which benzylideneacetone was the most potent. These three compounds share a common chemical structure: a pentenebenzene ring. Alternation of this common structure resulted in significant loss of their inhibitory activity to the hemocyte-spreading behavior.