This paper aims at developing an environmentally friendly modular dome structure system with highly filled extrusion wood-plastic composite (WPC) member, and manufacturing a real-size specimen by modularizing members and nodes. The member used in the model is the WPC member with 70% wooden fiber contests, which is higher then previous WPC one. Its members and nodes are modularized by analyzing geometric characteristics of icosahedral-based geodetic dome. Applicapability of the 6ea prototype nodes and 3ea prototype members to the modular dome is examined with the results of the modulaization and the making process for the real-size specimen. Besides, from the analysis results, the lowest buckling mode is expected to be a nodal buckling on a node near the boundary.
This study investigates the geodesic dome based on an icosahedron and development of joint modules that make up a dome structure in order to model the modular dome using the wood-plastic composite member with 70% of wooden fiber contests. The purpose of this work is used as a basis for verification of structural performance of WPC in the real structures.