The mesophase pith was synthesized based on effects of a high-pressure thermal condensation and feed (PFO/FCC-DO) blending. The reaction conditions were designed by fluidity and reactivity of each feed during the thermal reaction. The high-pressure thermal condensation process disturbs distillation of the volatile compounds in pyrolysis fuel oil (PFO); the fluidity can be controlled. In the blending process, PFO, which has a high thermal condensation reactivity, and fluid catalytic cracking-decant oil (FCC-DO), which maintains fluidity, interacted with a synergistic effect. Thus, mesophase pitch with a large mesophase content was manufactured by the two above processes.
Partial mesophase (PM) pitch precursor was prepared from fluidized catalytic cracking-decant oils (FCC-DO) by chemical reaction in the presence of Br2. The PM pitch heated-treatment at 420℃ for 9 h exhibited the softening point of 297℃ with 23% yield, and 55% anisotropic content. The PM pitch precursor was melt-spun through circular nozzle by pressurized N2, stabilized at 310℃, carbonized at 700℃, 1000℃, and 1200℃. The enough stabilization introduced 16.4% of the oxygen approximately. The stacking height (Lc002) and interlayer spacing (d002) of the as-spun fibers were 4.58 nm and 3.45a and the value became minimum and maximum at 700℃ respectively in the carbonization procedure. The tensile strength increased with an increase in the heat treatment temperature exhibiting highest value of 750 MPa at 1200℃ carbonization.