검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2014.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We synthesized Fe-doped TiO2/α-Fe2O3 core-shell nanowires(NWs) by means of a co-electrospinning method anddemonstrated their magnetic properties. To investigate the structural, morphological, chemical, and magnetic properties of thesamples, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectronspectroscopy were used, as was a vibrating sample magnetometer. The morphology of the nanostructures obtained aftercalcination at 500oC exhibited core/shell NWs consisting of TiO2 in the core region and α-Fe2O3 in the shell region. In addition,the XPS results confirmed the formation of Fe-doped TiO2 by the doping effect of Fe3+ ions into the TiO2 lattice, which canaffect the ferromagnetic properties in the core region. For comparison, pure α-Fe2O3 NWs were also fabricated using anelectrospinning method. With regard to the magnetic properties, the Fe-doped TiO2/α-Fe2O3 core-shell NWs exhibited improvedsaturation magnetization(Ms) of approximately ~2.96emu/g, which is approximately 6.1 times larger than that of pure α-Fe2O3NWs. The performance enhancement can be explained by three main mechanisms: the doping effect of Fe ions into the TiO2lattice, the size effect of the Fe2O3 nanoparticles, and the structural effect of the core-shell nanostructures.
        4,000원
        2.
        2012.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fe doped TiO2 nanoparticles were prepared under high temperature and pressure conditions by mixture of metal nitrate solution and TiO2 sol. Fe doped TiO2 particles were reacted in the temperature range of 170 to 200˚C for 6 h. The microstructure and phase of the synthesized Fe doped TiO2 nanoparticles were studied by SEM (FE-SEM), TEM, and XRD. Thermal properties of the synthesized Fe doped TiO2 nanoparticles were studied by TG-DTA analysis. TEM and X-ray diffraction pattern shows that the synthesized Fe doped TiO2 nanoparticles were crystalline. The average size and distribution of the synthesized Fe doped TiO2 nanoparticles were about 10 nm and narrow, respectively. The average size of the synthesized Fe doped TiO2 nanoparticles increased as the reaction temperature increased. The overall reduction in weight of Fe doped TiO2 nanoparticles was about 16% up to ~700˚C; water of crystallization was dehydrated at 271˚C. The transition of Fe doped TiO2 nanoparticle phase from anatase to rutile occurred at almost 561˚C. The amount of rutile phase of the synthesized Fe doped TiO2 nanoparticles increased with decreasing Fe concentration. The effects of synthesis parameters, such as the concentration of the starting solution and the reaction temperature, are discussed.
        3,000원
        3.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effects of oxygen deficiency on the room temperature ferromagnetism in Fe-doped reduced have been investigated by comparing the air-annealed compound with secondly post-annealed one in vacuum ambience. The air-annealed sample showed a paramagnetic behavior at room temperature. However, when the sample was further annealed in vacuum, a strongly enhanced ferromagnetic behavior was observed at same temperature. spectra of air-annealed sample at 295K showed a single doublet of , suggesting that the Fe ions are paramagnetic. On the other hand, the absorption spectra after vacuum-annealing exhibited two doublets, in which one is the same component with air-annealed sample and the other is new doublet corresponding to state. This result suggests that the occurrence of ferromagnetism in reduced sample may be interpreted as the contribution of unquenched orbital moment of ions.
        4,000원
        4.
        2006.09 구독 인증기관·개인회원 무료
        Fe-doped TiO2 nanopowders were prepared by mechanical alloying (MA) varying Fe contents up to 8.0 wt.%. The UV-vis absorption showed that the UV absorption for the Fe-doped powder shifted to a longer wavelength (red shift). The absorption threshold depends on the concentration of nano-size Fe dopant. As the Fe concentration increased up to 4 wt.%, the UV-vis absorption and the magnetization were increased. The benefical effect of Fe doping for photocatalysis and ferromagnetism had the critical dopant concentration of 4 wt.%. Based on the UV absorption and magnetization, the dopant level is localized to the valence band of TiO2.