검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.11 구독 인증기관·개인회원 무료
        Despite its advantages such as safety, unnecessary pretreatment, and decontamination of waste with complex geometry, conventional ultrasonic decontamination technology has been only used to remove loose contaminants, oil and grease, not fixed contaminants due to the limitations in increasing the intensity in the high frequency range. Thus, ultrasound has been used as an auxiliary method to accelerate chemical decontamination of radioactive wastes or chemicals were added to the solution to increase the decontamination efficiency. The recently developed high-intensity focused ultrasound (HIFU) decontamination technology overcomes these limitations by combining multiple frequencies of ultrasonic waves in a specific arrangement, making it possible to remove most fixed contaminants, including radioactive micro particles less than 1 micrometer within half an hour. KEPCO NF and EnesG developed mobile HIFU decontamination equipment and successfully demonstrated the decontamination effect on various radionuclides found in nuclear power plants by treating radioactive metal waste to the level below free release criteria. The mobile HIFU decontamination equipment used in the demonstration can be operated anywhere where water is supplied, including controlled area in nuclear power plants, and is expected to be used widely for decontamination and free release of metal radioactive wastes.
        3.
        2016.12 서비스 종료(열람 제한)
        High intensity focused ultrasound (HIFU) treatment of uterine myoma is a non-invasive procedure that uses high intensity, focused ultrasound to heat and destroy the tissue of uterine myoma. The history of using therapeutic ultrasound dates back to the early 20th century, and since, the technique has been continuously improved to an extent that the breadth of its clinical applications, both diagnostic and therapeutic, justify the integral role it plays in medicine today. HIFU treatment requires that ultrasound beams be focused on targeted uterine myoma. Due to significant energy dissipation at the focus, temperatures within tissues increase to more than 65℃, and destroy diseased tissue. This technology can achieve precise "ablation" of myoma tissue, and because it destroys diseased tissue non-invasively, it is also known as "Non-invasive HIFU surgery". Development of this technology significantly broadened the range of treatment options for patients suffering from uterine myoma. Furthermore, in contrast to surgery, HIFU requires only a short period of hospitalization and has a low complication rate. Today, HIFU is being used more frequently to treat adenomyosis, but its increased use has led to the reporting of more complications. Here, the authors report a case of uterine perforation after HIFU ablation for adenomyosis.
        4.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 집속형 초음파를 이용하는 뇌 질환 치료의 연구를 위한 인체 두부 유사 팬텀을 개발하였다. 문헌 연구를 통하여 피부 조직, 두개골, 뇌 조직의 음향학적 및 물리적 특성을 조사하였으며 근사한 값을 가지는 적합한 각 조직 대체 물질을 제시하였다. 피부 조직의 경우 글리세롤 기반 연부 조직 유사 팬텀의 성분비를 조정하여 실제 조직과유사한 음향학적 특성을 가지도록 하였으며 고분자 합성수지의 음향학적 특성을 측정하여 두개골 유사 물질로써의 적합성을 평가하였다. 뇌 조직은 투명한 egg white 팬텀을 이용하여 집속형 초음파의 가열 특성을 확인할 수 있도록 하였다. 또한 뇌 질환 치료 프로토콜 개발을 위한 시험 조사가 가능하도록 대체 물질들을 결합한 두부 유사 팬텀을 제작하였고 제작된 팬텀의 유효성 및 활용성 평가를 위해 초음파 조사 조건에 따른 팬텀의 변성을 관찰하였다.