PURPOSES : Pavement surface friction depends significantly on pavement surface texture characteristics. The mean texture depth (MTD), which is an index representing pavement surface texture characteristics, is typically used to predict pavement surface friction. However, the MTD may not be sufficient to represent the texture characteristics to predict friction. To enhance the prediction of pavement surface friction, one must select additional variables that can explain complex pavement surface textures. METHODS : In this study, pavement surface texture characteristics that affect pavement surface friction were analyzed based on the friction mechanism. The wavelength, pavement surface texture shape, and pavement texture depth were hypothesized to significantly affect the surface friction of pavement. To verify this, the effects of the three abovementioned pavement surface texture characteristics on pavement surface friction must be investigated. However, because the surface texture of actual pavements is irregular, examining the individual effects of these characteristics is difficult. To achieve this goal, the selected pavement surface texture characteristics were formed quantitatively, and the irregularities of the actual pavement surface texture were improved by artificially forming the pavement surface texture using threedimensionally printed specimens. To reflect the pavement surface texture characteristics in the specimen, the MTD was set as the pavement surface texture depth, and the exposed aggregate number (EAN) was set as a variable. Additionally, the aggregate shape was controlled to reflect the characteristics of the pavement surface texture of the specimen. Subsequently, a shape index was proposed and implemented in a statistical analysis to investigate its effect on pavement friction. The pavement surface friction was measured via the British pendulum test, which enables measurement to be performed in narrow areas, considering the limited size of the three-dimensionally printed specimens. On wet pavement surfaces, the pavement surface friction reduced significantly because of the water film, which intensified the effect of the pavement surface texture. Therefore, the pavement surface friction was measured under wet conditions. Accordingly, a BPN (wet) prediction model was proposed by statistically analyzing the relationship among the MTD, EAN, aggregate shape, and BPN (wet). RESULTS : Pavement surface friction is affected by adhesion and hysteresis, with hysteresis being the predominant factor under wet conditions. Because hysteresis is caused by the deformation of rubber, pavement surface friction can be secured through the formation of a pavement surface texture that causes rubber deformation. Hysteresis occurs through the function of macro-textures among pavement surface textures, and the effects of macro-texture factors such as the EAN, MTD, and aggregate shape on the BPN (wet) are as follows: 1) The MTD ranges set in this study are 0.8, 1.0, and 1.2, and under the experimental conditions, the BPN (wet) increases linearly with the MTD. 2) An optimum EAN is indicated when the BPN (wet) is the maximum, and the BPN decreases after its maximum value is attained. This may be because when the EAN increases excessively, the space for the rubber to penetrate decreases, thereby reducing the hysteresis. 3) The shape of the aggregate is closely related to the EAN; meanwhile, the maximum value of the pavement surface friction and the optimum EAN change depending on the aggregate shape. This is believed to be due to changes in the rubber penetration volume based on the aggregate shape. Based on the results above, a statistical prediction model for the BPN (wet) is proposed using the MTD, EAN, and shape index as variables. CONCLUSIONS : The EAN, MTD, and aggregate shape are crucial factors in predicting skid resistance. Notably, the EAN and aggregate shape, which are not incorporated into existing pavement surface friction prediction models, affect the pavement surface friction. However, the texture of the specimen created via three-dimensional printing differs significantly from the actual pavement surface texture. Therefore, the pavement surface friction prediction model proposed in this study should be supplemented with comparisons with actual pavement surface data in the future.
In unfrictionless markets, one measure of asset pricing is its height of friction. This study develops a three-factor model by loosening the assumptions about stocks without friction, without risk, and perfectly liquid. Friction is used as an indicator of transaction costs to be included in the model as a variable that will reduce individual profits. This approach is used to estimate return, beta and other variable for firms listed on the Indonesian Stock Exchange (IDX). To test the efficacy of friction-adjusted three-factor model, we use intraday data from July 2016 to October 2018. The sample includes all listed firms; intraday data chosen purposively from regular market are sorted by capitalization, which represents each tick size from the biggest to smallest. We run 3,065,835 intraday data of asking price, bid price, and trading price to get proportional quoted half-spread and proportional effective half-spread. We find evidence of adjusted friction on the three-factor model. High/low trading friction will cause a significant/insignificant return difference before and after adjustment. The difference in average beta that reflects market risk is able to explain the existence of trading friction, while the difference between SMB and HML in all observation periods cannot explain returns and the existence of trading friction.
Mechanical systems using tendon-driven actuators have been widely used for bionic robot arms because not only the tendon based actuating system enables the design of robot arm to be very efficient, but also the system is very similar to the mechanism of the human body’s operation. The tendon-driven actuator, however, has a drawback caused by the friction force of the sheath. Controlling the system without considering the friction force between the sheath and the tendon could result in a failure to achieve the desired dynamic behaviors. In this study, a mathematical model was introduced to determine the friction force that is changed according to the geometrical pathway of the tendon-sheath, and the model parameters for the friction model were estimated by analyzing the data obtained from dedicated tests designed for evaluating the friction forces. Based on the results, it is possible to appropriately predict the friction force by using the information on the pathway of the tendon.
For a mobile robot that travels along a terrain consisting of various geology, information on tire force and friction coefficient between ground and wheel is an important factor. In order to estimate the lateral force between ground and wheel, a lot of information about the model and the surrounding environment of the vehicle is required in conventional method. Therefore, in this paper, we are going to estimate lateral force through simple model (Minimal Argument Lateral Slip Curve, MALSC) using only minimum data with high estimation accuracy and to improve estimation reliability of the friction coefficient by using the estimated lateral force data. Simulation is carried out to analyze the correlation between the longitudinal and transverse friction coefficients and slip angles to design the simplified lateral force estimation model by analysing simulation data and to apply it to the actual field environment. In order to verify the validity of the equation, estimation results are compared with the conventional method through simulation. Also, the results of the lateral force and friction coefficient estimation are compared from both the conventional method and the proposed model through the actual robot running experiments.
이 논문에서는 관망시스템의 마찰항을 보정하기 위해서, 부정류 마찰 모형과 Levenberg Marquardt 방법을 합성하였다. 부정류 마찰항을 고려하기 위한 방법으로 빈도 의존 마찰항을 사용하였으며, 특성선 방법을 모형 개발의 기반으로 하였다. 최적화에 필요한 Hessian과 Jacobian 행렬을 구하기위해서 수압을 직접 마찰항에 미분한 항을 계산하였으며, 특성선 방법상에서의 다양한 수압과 유량에 대한 마찰계수의 민감도를 수식으로 유도하였다. 간단한 관망을 가정한 뒤, 갑작스런 밸브의 거동으로 도입된 수압의 시계열을 확보하였고, 이를 이용하여 정상류 마찰 모형과 부정류 마찰모형의 마찰항 보정을 수행하였다. 제안된 방법과 진화 연산 알고리즘의 마찰항 수렴거동을 비교하였으며, Leveberg Marquardt방법의 안정적이고 신속한 수렴결과를 확인하였다.
In this study, an analytical model of a knee-brace employing disc springs and friction pads is developed. A ring-spring model proposed by Hill is adopted for the knee-brace analysis model. The cyclic response obtained from the analysis model is compared with corresponding experimental results. The comparison indicates that the suggested analytical model is capable of capturing the hysteretic behavior of a knee-brace employing ring-springs and friction pads
이 논문에서는 관망시스템의 수격압 현상을 모의하기 위해서 합성 부정류 마찰 모형을 개발하였다. 부정류 마찰항을 고려하기 위한 방법으로 빈도 의존 마찰항과 순간 가속도 기반 마찰 모형을 합성하였으며, 특성선 방법을 모형 개발의 기반으로 하였다. 관망에서의 부정류 모형으로 가장 널리 쓰이는 Zielke의 마찰항 모형과 Ramos의 마찰항 모형들과 종합적인 비교를 수행하였다. 모의 결과를 검증하기 위해서 고빈도로 수압을 측정할 수 있는 자료 획득체제를 구비한 관망시스템을 구축하였다. 정상상태에서 밸브 급폐로 야기된 수격압의 수압 시계열을 2가지 Reynolds수에서 확보하였다. 모의 결과는 pilot 관망체제에서 확보한 실험 자료와 비교하였다. 부정류 마찰항 모형의 매개변수 보정을 위해서 시행착오 방법이 도입되었으며, 부정류 마찰항들을 비교한 결과는 수격압에서 수압이 감쇄되는 과정에 대한 전반적인 이해를 돕고자 하였다. 이와 같은 결과는 관망의 천이류를 적절히 예측하는데 부정류 마찰항의 적절한 고려가 필수적인 부분임을 알려주고 있다.