1. 전 세계 GM작물 재배면적은 매년 꾸준히 증가하여 2018년에는 191.7백만 ha에 도달하였다. 26개국에서 GM작물이 재배되고 있으며, EU 포함 44개국에서 식품, 사료 및 가공용으로 승인하였다. 2. 국내 농업용 GM작물 승인 현황 조사 결과, 2015년에 GM작물이 가장 많이 승인되었으며, 농업적 형질은 제초제내성에 이어 해충저항성이 많았다. 단일품목과 후대교배종을 포함하여 옥수수가 가장 많이 승인된 작물이며, 후대교배종 승인은 꾸준히 증가하여 승인된 전체 GM작물의 57%를 차지한다. 3. 승인된 GM작물의 형질은 농업적 유용 형질에서 소비자 중심으로 변화되고 있다. 제초제내성과 해충저항성과 같은 1세대 GM작물은 생산비 절감이나 수량 증가 등으로 농민에게 경제적 이익을 제공하였으며, 2세대 GM작물은 소비자들에게 더 많은 혜택을 제공하는 기능성 강화나 산업용 특성을 증가시킨 것이 특징이다. 4. 향후 농업인과 소비자 모두에게 이익이 되는 연구개발과 실용화 추진을 위해 미래 대응 GM작물 개발과 형질 예측에 필요한 산업 성장 추세 정보를 제공하였다.
생명공학 관련 회사들이 유전자 변형 품종을 적극적으로 개발함으로서 생명공학 관련 시장규모도 급속도로 성장하고 있으며, GM 작물의 재배면적도 매년 빠르게 증가하고 있다.1996년 GM 작물이 처음 재배된 이후 2014년 현재 28개국에서 유전자 변형 작물을 재배하고 있으며, 재배면적도 1996년170만 헥타르에서 100배 이상 증가하여 1억 8,150만 헥타르에재배되고 있어, GM 작물은 근래에 가장 빨리 채택된 육종기술로 인정 받고 있다. 전 세계 GM 작물 재배품종 중 가장많이 재배되고 있는 형질은 제초제 내성이 도입된 품종으로 1억 260만 헥타르에 이르며 전체의 57%에 해당하고, 다음이제초제 내성과 해충 저항성이 함께 형질전환된 품종이 재배되고 있다. 농민이 GM 작물을 재배함으로서 수확량 증가, 농약사용 감소, 농가 수익 증가 등 혜택을 받을 수 있어 매년GM 작물을 재배하는 면적이 증가하고 있으며, 특히 개발도상국에서의 GM 작물의 채택률이 선진국보다 더 빠르게 증가하고 있다. 콩, 옥수수, 면화 등 GM 작물의 급속한 증가에도 불구하고 아직도 작물의 재배로 발생할 수 있는 환경의 영향, 작물의 잡초화, 신종 병해충의 출현 가능성으로 인한 위해성 논란 등 생명공학 안전성에 대한 문제가 끊임 없이 제기되고 있어 GM 작물에 대한 위해성 검증과 안전성에 대한 적극적인연구와 홍보가 요구된다.
In 2012, the world population exceeded 7 billion and the need to address food security has never been greater. Achieving food security won’t be easy considering the megatrends of growing population, greater affluence, and increasing urbanization. Not only are more people demanding more food, but they want greater variety, including meat, dairy, fruits and vegetables. While demand for food is growing, farmers’ ability to increase productivity is facing unprecedented challenges. Scarcity of water, energy, and land is expected to define food production in the coming decades. Agricultural practices will also need to protect biodiversity through increasing productivity without expanding into natural ecosystems. Further exacerbating the situation is a changing climate that has led to higher temperatures and erratic weather patterns in some areas. Each day farmers face the challenge of growing more from less - increasing yields while protecting the environment by using less water, land, and energy. Global Agricultural Biotechnology companies like Syngenta have addressed these challenges through innovation in research and development by looking at the grower’s challenges holistically, including land, technology, and the community. The presentation will cover general R&D activities in an agricultural biotechnology company, which may differ from those in academic research institutes. Product safety and environmental considerations are integral to industry’s R&D work. To make earlier and better-informed decisions on which active ingredients or traits to move forward, normally companies begin safety trials early in the development process, facilitating timely engagement with regulators and other key stakeholders. Also to complement in-house expertise and bring in novel technologies which may or may not be used in agribusiness, companies are actively seeking value-adding partnerships and collaborations to bring exciting new offers to the grower. Development of a GM crop through all those activities mentioned above is quite a costly and lengthy process. My presentation will describe a typical process required for developing a GM crop in an agricultural biotechnology company from early discovery to commercialization to the market, which may give you a different perspective from academic point of view.
Plant breeding has at this moment two gene pools available: 1. plant breeders’ gene pool consisting of all crossable germplasm. All the genes from this source are available in classical plant breeding. Functional genes isolated from this natural source are called “cisgenes”; 2. a new gene pool consists of transgenes, which are chimeric and mostly partly or totally consisting of genes from non-crossable species, including bacteria, viruses, etc. When GM breeding started in the eighties of last century’ only transgenes belonging to the new gene pool were available. The complicated biosafety regulations, needed for this new gene pool, have been based on these so called transgenic traits but because of the transformation process accidentally they are also including cisgenes. In this way cisgenesis belongs to the expensive class of GM breeding which is only practiced by multinationals in the so called large crops such as maize, soybean and cotton.
Reconstructed logic delivers several arguments against the classification of cisgenesis into the GMO class: 1. Cisgenes are already existing in nature and belong to the breeders gene pool, 2. It does not fit the definition of a GMO, 3. It is in practice classical breeding replacing existing introgression and translocation breeding with the advantage of absence of linkage drag, 4. The EFSA recently showed that cisgenesis is as safe as classical plant breeding, 5. Another EU committee on new techniques concluded in majority that a sequence of at least 20 bp is needed to come to a new combination which has to be classified as GMO. So, cisgenic plants, mostly without insertion of borders, are not considered to be a GMO. A simple rule should be developed, including criterions, for defining true cisgenic plants.
In this presentation, the creation of cisgenic, more durable, resistance of potato against potato late blight will be discussed. This is based on working simultaneously on the genetics of both potato and Phytophthora infestance and on stacking of broad spectrum R-genes. Isolation and use of over 20 R-genes and more than seven Avr-genes will be described and the use of them to come to functional stacking of at least three R-genes. Another important issue is, because of absence of cisgenic selection markers, the setup of a marker free transformation system. Cisgenesis is the most effective way to improve in one step worldwide frequently used free potato varieties, which are highly susceptible to late blight. If needed additional broad spectrum R-genes can be added later by re-transformation.