검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, two types of thick steel plates are prepared by controlling carbon equivalent and nickel content, and their microstructures are analyzed. Tensile tests, Vickers hardness tests, and Charpy impact tests are conducted to investigate the correlation between microstructure and mechanical properties of the steels. The H steel, which has high carbon equivalent and nickel content, has lower volume fraction of granular bainite (GB) and smaller GB packet size than those of L steel, which has low carbon equivalent and nickel content. However, the volume fraction of secondary phases is higher in the H steel than in the L steel. As a result, the strength of the L steel is higher than that of the H steel, while the Charpy absorbed energy at -40 °C is higher than that of the L steel. The heat affected zone (HAZ) simulated H-H specimen has higher volume fraction of acicular ferrite (AF) and lower volume fraction of GB than the HAZ simulated L-H specimen. In addition, the grain size of AF and the packet sizes of GB and BF are smaller in the H-H specimen than in the L-H specimen. For this reason, the Charpy absorbed energy at -20 °C is higher for the H-H specimen than for the L-H specimen.
        4,000원
        2.
        2019.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the correlation between microstructure and Charpy impact properties of FCAW(Flux cored arc welding) HAZ(Heat affected zone) of thick steel plates for offshore platforms was investigated. The 1/4 thickness(1/4t) location HAZ specimen had a higher volume fraction of bainite and finer grain size of acicular ferrite than those of the 1/2 thickness (1/2t) location HAZ specimen because of the post heat effect during the continuous FCAW process. The Charpy impact energy at -20 oC of the 1/4t location HAZ specimen was lower than that of the 1/2t location HAZ specimen because of the high volume fraction of coarse bainite. The Charpy impact energy at -40 and -60 oC of the 1/2t location HAZ specimen were higher than those of the 1/2t location HAZ specimen because the ductile fracture occurred in the fine acicular ferrite and martensite regions. In the ductile fracture mode, the deformed regions were observed in fine acicular ferrite and martensite regions. In the brittle fracture mode, long crack propagation path was observed in bainite regions.
        4,000원
        3.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, three kinds of bainitic steel plates are manufactured by varying the chemical compositions and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room and low temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone (HAZ) specimens are fabricated by a simulation of welding processes, and the HAZ microstructure is analyzed. The base steel that has the lowest carbon equivalent has the highest volume fraction of acicular ferrite and the lowest volume fraction of secondary phases, so the strength is the lowest and the elongation is the highest. The Mo steel has a higher volume fraction of granular bainite and more secondary phases than the base steel, so the strength is high and the elongation is low. The CrNi steel has the highest volume fraction of the secondary phases, so the strength is the highest and elongation is the lowest. The tensile properties of the steels, namely, strength and elongation, have a linear correlation with the volume fraction of secondary phases. The Mo steel has the lowest Charpy impact energy at -80 oC because of coarse granular bainite. In the Base-HAZ and Mo-HAZ specimens, the hardness increases as the volume fraction of martensite-austenite constituents increases. In the CrNi-HAZ specimen, however, hardness increases as the volume fraction of martensite and bainitic ferrite increases.
        4,000원
        4.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the current steel structures of high-rise buildings, high heat input welding techniques are used to improve productivity in the construction industry. Under the high heat input welding, however, the microstructures of the weld metal (WM) and heat-affected zone (HAZ) coarsen, resulting in the deterioration of impact toughness. This study focuses mainly on the effects of fine TiN precipitates dispersed in steel plates and B addition in welding materials on grain refinement of the HAZ microstructure under submerged arc welding (SAW) with a high heat input of 200 kJ/cm. The study reveals that, different from that in conventional steel, the γ grain coarsening is notably retarded in the coarse grain HAZ (CGHAZ) of a newly developed steel with TiN precipitates below 70 nm in size even under the high heat input welding, and the refinement of HAZ microstructure is confirmed to have improved impact toughness. Furthermore, energy dispersive spectroscopy (EDS) and secondary-ion mass spectrometry (SIMS) analyses demonstrate that B is was identified at the interface of TiN in CGHAZ. It is likely that B atoms in the WM are diffused to CGHAZ and are segregated at the outer part of undissolved TiN, which contributes partly to a further grain refinement, and consequently, improved mechanical properties are achieved.
        4,000원
        5.
        1996.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        용접부 인성을 향상시키기 위해 Ti 산화물을 첨가한 Ti 산화물강에 대하여 용접시 최고가 열온도와 냉각속도의 변화가 용접열영향부의 미세조직에 미치는 영향을 조사하였다. 용접열영향부의 인성향상에 기여하는 acicular ferrite는 1400˚C 이상의 최고가열온도와 δt800-500가 40초보다 빠른 냉각속도에서 활발해 생성되었다. 오스테나이트 결정립내에서 개재물로부터 핵생성된 일차 acicular ferite의 생성량은 전체 aicular ferrite의 약 20% 정도로 적었으며 대부분의 acicular ferrite는 일차 acicular ferrite로부터 생성된 이차 acicular ferrite인 것으로 나타났다. 이차 acicular ferrite는 plate사이에 Fe3C층이 존재하는 것으로 보아 확산기구에 의해 생성되는 것으로 생각된다. 개재물은 TiO, TiO2, TiN, MnS, AI2O3 MnO(galaxite)등으로 구성된 복합상이었으며 개재물이 일차 acicular ferrite의 핵생성 site로 작용하기 위해서는 약 1μm이상의 크기가 효과적인 것으로 나타났다. Ti 산화물과 TiN는 직접적인 acicular ferrite의 핵생성 site로 작용하기보다는 MnS, galaxite 등의 석출 site로 작용하여 개재물의 크기를 증가시킴으로써 acicular ferrite의 생성을 촉진시키는 것으로 생각된다.
        4,300원