Tungsten carbide is widely used in carbide tools. However, its production process generates a significant number of end-of-life products and by-products. Therefore, it is necessary to develop efficient recycling methods and investigate the remanufacturing of tungsten carbide using recycled materials. Herein, we have recovered 99.9% of the tungsten in cemented carbide hard scrap as tungsten oxide via an alkali leaching process. Subsequently, using the recovered tungsten oxide as a starting material, tungsten carbide has been produced by employing a self-propagating high-temperature synthesis (SHS) method. SHS is advantageous as it reduces the reaction time and is energy-efficient. Tungsten carbide with a carbon content of 6.18 wt % and a particle size of 116 nm has been successfully synthesized by optimizing the SHS process parameters, pulverization, and mixing. In this study, a series of processes for the highefficiency recycling and quality improvement of tungsten-based materials have been developed.
This study focuses on the fabrication of a WC/Co composite powder from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere for the recycling of WC/Co hardmetal. Mixed powders are manufactured by mechanically milling the oxide powder of WC-13 wt% Co hardmetal scrap and carbon black with varying powder/ball weight ratios. The oxide powder of WC-13 wt% Co hardmetal scrap consists of WO3 and CoWO4. The mixed powder mechanically milled at a lower powder/ball weight ratio (high mechanical milling energy) has a more rapid carbothermal reduction reaction in the formation of WC and Co phases compared with that mechanically milled at a higher powder/ball weight ratio (lower mechanical milling energy). The WC/Co composite powder is fabricated at 900℃ for 6 h from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere. The fabricated WC/Co composite powder has a particle size of approximately 0.25-0.5 μm.
This study focuses on the development of an alkaline leaching hydrometallurgy process for the recovery of tungsten from WC/Co hardmetal sludge, and an examination of the effect of the process parameters on tungsten recovery. The alkaline leaching hydrometallurgy process has four stages, i.e., oxidation of the sludge, leaching of tungsten by NaOH, refinement of the leaching solution, and precipitation of tungsten. The WC/Co hardmetal sludge oxide consists of WO3 and CoWO4. The leaching of tungsten is most affected by the leaching temperature, followed by the NaOH concentration and the leaching time. About 99% of tungsten in the WC/Co hardmetal sludge is leached at temperatures above 90oC and a NaOH concentration above 15%. For refinement of the leaching solution, pH control of the solution using HCl is more effective than the addition of Na2S·9H2O. The tungsten is precipitated as high-purity H2WO4·H2O by pH control using HCl. With decreasing pH of the solution, the tungsten recovery rate increases and then decrease. About 93% of tungsten in the WC/Co hardmetal sludge is recovered by the alkaline leaching hydrometallurgy process.
The effects of B4C on the mechanical properties of WC/Ni-Si hardmetal were analyzed using sintered bod- ies comprising WC(70-x wt.%), Ni (28.5 wt.%), Si (1.5 wt.%), and B4C (x wt.%), where 0 x 1.2 wt.%. Samples were prepared by a combination of mechanical milling and liquid-phase sintering. Phase and microstructure character- izations were conducted using X-ray diffractometry, scanning electron microscopy, and electron probe X-ray micro anal- ysis. The mechanical properties of the sintered bodies were evaluated by measuring their hardness and transverse rupture strength. The addition of B4C improved the sinterability of the hardmetals. With increasing B4C content, their hardness increased, but their transverse rupture strength decreased. The changes of sinterability and mechanical properties were attributed to the alloying reaction between B4C and the binder metal (Ni, Si). ≤ ≤
Pure WC or WC with low Co concentration less than 0.5 wt.% is studied to fabricate high density WC/Co cemented carbide using vacuum sintering and post HIP process. Considering the high melting point of WC, it is difficult to consolidate it without the use of Co as binder. In this study, the effect of lower Co addition on the microstructure and mechanical properties evolution of WC/CO was investigated. By HIP process after vacuum sintering, hardness and density was sharply increased. The hardness values was using binderless WC.
The linear intercept (LI) method was used to quantitatively measure the intercepts of WC grains in nano-grained WC-10Co hardmetal. When the surveyed intercept numbers of WC grain exceeded 200, the statistic data for the mean grain size of WC were reproduced. The discriminative minimal grain size of used LI method was 12 nm; the maximum intercept of WC grain was 109 nm; the average intercept of WC grains was 45 nm and the corresponding 3D mean grain size of WC was 70 nm which is agreeable with the XRD outcome.
High functional micro devices are demanded in a variety of fields. For realising such demands, development of high-precision micro-components installed in the devices are needed. To achieve high-precision in the mold processing of micro-components, the development of mold materials, i.e., the development of WC-Co hardmetal with higher hardness and fracture strength is essential, together with the developments of processing technology of high precision mold and mold-forming technology of high precision micro-components, etc. The role of development of the finer submicro-grained hardmetal in a NEDO national project aiming the integrated development of these all technologies and some results are mainly explained.
WC/WC interface in VC mono-doped WC-10mass%Co submicro-grained hardmetals of was investigated together with WC/Co interface by using HRTEM and XMA. The thickness of V-rich layer and the analytical value of V at WC/WC interface were almost the same as those at WC/Co interfaces. These results, etc., suggested that the V-rich layers at both interfaces were not generated by an equilibrium segregation mechanism in the sintering stage, but generated by a preferential precipitation mechanism during the solidification of Co liquid phase in the cooling stage. Based on this suggestion, we succeeded in developing a nano-grained hardmetal with 100 nm .
In the present study, the focus is on the analysis of carbothermal reduction of oxide powder prepared from waste WC/Co hardmetal by solid carbon under a stream of argon for the recycling of the WC/Co hard-metal. The oxide powder was prepared by the combination of the oxidation and crushing processes using the waste hardmetal as the raw material. This oxide powder was mixed with carbon black, and then this mixture was carbothermally reduced under a flowing argon atmosphere. The changes in the phase structure and gases discharge of the mixture during carbothermal reduction was analysed using XRD and gas analyzer. The oxide powder prepared from waste hardmetal has a mixture of . This oxide powder reduced at about , formed tungsten carbides at about , and then fully transformed to a mixed state of tungsten carbide (WC) and cobalt at about by solid carbon under a stream of argon. The WC/Co composite powder synthesized at for 6 hours from oxide powder of waste hardmetal has an average particle size of .
The oxidation behavior of 91 WC-9Co hardmetal in weight percentage has been studied in the present work as a part of the development of recycling process. The morphological and compositional changes of the WC-Co hardmetal with oxidation time at 90 were analyzed by using surface observation and X-ray diffraction. respective]y. As the oxidation time increased, the WC-Co hardmetal was continuously expanded to form porous oxide mixtures of and . The morphology of porous oxide mixture was basically dependent on initial shape of the WC-Co hardmetal. From thermo-gravimetric (TG) analysis, it was found that the oxidation rate was increased with increasing oxidation temperature and oxygen content in the flowing atmospheric gas. The fraction of oxidation versus time curves showed S-curve relationship at a given of oxidation temperature. These oxidation behaviors of the WC-Co hardmetal were discussed in terms of previously proposed kinetic models.
In this study, the WC-10 wt.%Co nanopowders doped by grain growth inhibiter were produced by three different methods based on the spray conversion process. Agglomerated powders with homeogenous distribution of alloying elements and with internal particles of about 100-200 nm in diameter were synthesized. The microstructural changes and sintering behavior of hardmetal compacts were compared with doping method and sintering conditions. The microstructure of hardmetals was very sensitive to doping methods of inhibitor. Nanostructured WC-Co hardmetal powder compacts containing TaC/VC doped by chemical method instead of ball-milling shown superior sintering densification, and the microstructure maintained ultrafine scale with rounded WC particles.