Background: The foot is a complex body structure that plays an important role in static and dynamic situations. Previous studies have reported that altered foot posture might affect knee joint strength and postural stability, however their relationship still remains unclear.
Objects: The purpose of this study was to identify whether pronated foot posture has an influence on knee isokinetic strength and static and dynamic postural stability.
Methods: Forty healthy young males aged 18 to 26 years were included. Foot posture was evaluated using the Foot Posture Index-6 (FPI-6), and the subjects were divided into two groups according to their FPI-6 scores: a neutral foot group (n = 20, FPI-6 score 0 to +5) and a pronated foot group (n = 20, FPI-6 score +6 or more). Biodex Systems 3 isokinetic dynamometer was used to evaluate knee isokinetic strength and hamstring to quadriceps ratio at three angular velocities: 60°/sec, 90°/sec, and 180°/sec. The static and dynamic postural stability in a single-leg stance under the eyes-open and eyes-closed conditions were measured with a Biodex Balance System.
Results: There were no significant differences between the groups in knee isokinetic strength and static postural stability (p > 0.05), but there was a significant difference in the medial– lateral stability index (MLSI) for dynamic postural stability under the eyes-closed condition (p = 0.022). The FPI-6 scores correlated significantly only with the dynamic overall stability index (OSI) and the MLSI (OSI: R = 0.344, p = 0.030; MLSI: R = 0.409, p = 0.009) under the eyesclosed condition.
Conclusion: Participants with pronated foot had poorer medial–lateral dynamic stability under an eyes-closed condition than those without, and FPI-6 scores were moderately positively correlated with dynamic OSI and dynamic MLSI under the eyes-closed condition. These results suggest that pronated foot posture could induce a change in postural stability, but not in knee isokinetic strength.
Background: The effect of mobilization on lumbar back pain has been fully described in several clinical aspects, but evidence for muscle strength would be still less clear.
Objective: To assess the effect of lumbar mobilization on lower limb strength in healthy individuals.
Methods and Analysis: Healthy people aged 18-65 will be included regardless of race or sex. Original peer-reviewed primary reporting randomized controlled trials (RCTs) will be included. Electronic databases, such as MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Web of Science, Pedro, CINAHL, ClinicalTrials.gov will be searched from inception until July 30. Only studies published in English will be included in this review. Two reviewers will complete the screening for eligibility independently, and the other two reviewers will also complete the risks of data extraction and bias assessment independently. Lower Limb strength will be assessed as primary outcome, and particular intervention or participant characteristics will be assessed as the secondary outcomes. Meta-analysis will be conducted using Review Manager 5.3.3, and evidence level will be assessed using the method for Grading of Recommendations Assessment, Development and Evaluation. Outcomes will be presented as the weighted mean difference or standardized mean difference with 95% CI. If I2 ≤ 50%, P>.1, the fixed effect model will be used, otherwise, random-effects model will be used. Ethics and dissemination: This review might not be necessary ethical approval because it does not require individual patient’s data; these findings will be published in conference presentations or peer-reviewed journal articles. PROSPERO registration number: CRD42020150144.
Background: Spinal Mobilization is one of the manual therapy technique that clinicians have used to treat pain, however, there is still a lack of research on changes in strength in healthy people.
Objectives: To investigate the effect of posterior-anterior lumbar mobilization on lower limb strength in healthy individuals.
Design: Two-group pretest-posttest design.
Methods: In this study, 23 healthy subjects aged 20 years were assigned to 12 lumbar mobilization group (LMG) and 12 sham group (SG) to perform intervention and measurement through pre- and post-design. Intervention was performed in LMG with grade III~IV on L3-5 of the lumbar spine, and lumbar mobilization was performed for each segment. After intervention, knee flexion and extension strength were measured. To measure the main effect on muscle strength, a comparative analysis was conducted using paired t-test and independent t-test. Results: In LMG, knee flexor and extensor strength were increased significantly at 60°/s (P<.05). In addition, the extensors of LMG and SG were significantly different only at 60°/s, and the flexors were significantly different between groups at both 60°/s and 180°/s (P<.05).
Conclusion: In healthy individuals, lumbar mobilization results in improvement of strength of knee flexor and extensor, and additional experiments on the effect of mobilization on the lumbar spine on functional changes in the lower limbs will be needed.
Background: Spontaneous use of the upper extremities on the affected side of patients with stroke is a meaningful indicator of recovery and may vary by the age or dominant hand of patients. No prior study has reported changes in actual amount of use test (AAUT) and motor activity log (MAL)-28 according to age and handedness in healthy adults, and AAUT inter-rater reliability for assessment of healthy adults.
Objects: This study aimed to (1) research the differences in AAUT and MAL-28 according to age and handedness in healthy adults, and (2) determine the inter-rater reliability of the AAUT.
Methods: Seventy healthy adults participated in this study. The MAL-28 was assessed by dividing 61 subjects into young right-handed (n1=20), young left-handed (n2=21), and older right-handed (n3=20) groups. The AAUT was assessed by dividing 63 subjects into young right-handed (n1=25), young left-handed (n2=18), and older right-handed (n3=20) groups. Student’s t-test and the Wilcoxon signedrank test were used for statistical analysis.
Results: The Amount of Use (AOU) scale values for each group showed no significant differences between age groups and handedness groups in the MAL-28 (p>.05). The AAUT AOU scale value showed significant differences regarding dominant handedness in the AAUT (p<.05), but no significant differences according to age (p>.05). (2) Inter-rater reliability of the AAUT was excellent, except few items (item 9, 11, and 12).
Conclusion: Although both the MAL-28 and the AAUT measured how much participants used their dominant arms in healthy subjects, the AAUT only showed significantly higher dominant arm use in left hander than the right hander. In addition, the inter-rater reliability of the AAUT was excellent. Current results can be utilized as a basic information when clinicians develop rehabilitation strategies, and AAUT was shown to be a reliable evaluation tool for measurement of upper extremity use in Korean adults, based on the reliability demonstrated by this study.
The original focus of this study was to investigate the immediate effects of lumbar rotational mobilization on the one-legged standing ability. Fifteen subjects (6 men and 9 women, mean age = 22.77 (SD = 1.21), mean height = 165.46cm (SD = 11.65), mean weight = 61.46kg (SD = 8.29) volunteers from healthy individuals were recruited and randomized to a lumbar rotational mobilization (LRM) group and a trunk rotational exercise (TRE) group. Mobilization (grade 3 or 4) was applied to the LRM group on the lumbar spine (L1 to L5) in a side-lying, and trunk twist exercise (left and right side) was applied the to the TRE group with lunge position. Center of pressure (COP) and the velocity of the center of pressure (VCOP) of each participant were measured as a balance ability through one leg standing position. Results are as follows. In within-group difference, the COP of the LRM group reduced during standing with the right foot, but the VCOP change of the LRM was not statistically significant. In between-groups difference, COP of TRE group was decreased compared with LRM group only during left leg standing in the eyes (p <.05). The results of this study suggest that LRM is more effective than TRE in improving balance ability.
The purpose of this study was to investigate the effects of stable and unstable bridging exercises on the EMG activity of abdominal muscles. Twenty healthy women participated in this study and the muscle activities of left-right rectus abdominis (RA), external oblique (EO), and internal oblique (IO) muscles were recorded during 4 bridging exercises (unilateral/ bilateral, stable/unstable). The activity of the right EO muscle was the highest during unilateral exercise in unstable condition, and left EO muscle also produced the same result. The activity of the right IO muscle was the highest during unilateral exercise in an unstable condition, and left IO muscle also produced the same result. The activity of the right RA muscle was the highest during unilateral exercise in a stable condition, and left RA muscle produced the same result. Unstable/unilateral (USUL) represented the highest activity among the 4 exercises. EO/IO muscles represented the highest activity during the USUL exercise, and RA did so during the stable/unilateral exercise. These results suggest that specific posture (USUL) can be administered targeting a specific side of abdominal muscles.