검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.11 구독 인증기관·개인회원 무료
        Decommissioning waste is generated with various types and large quantities within a short period. Concrete, a significant building material for nuclear facilities, is one of the largest decommissioning wastes, which is mixed with aggregate, sand, and cement with water by the relevant mixing ratio. Recently, the proposed treatment method for volume reduction of radioactive concrete waste was proven up to scale-up testing using unit equipment, which involved sequentially thermomechanical and chemical treatment. According to studies, the aggregate as non-radioactive material is separated from cement components with contaminated radionuclides as less than clearance criteria, so the volume of radioactive concrete waste is decreased effectively. However, some supplementation points were presented to commercialize the process. Hence, the process requires efficiency as possible to minimize the interface parts, either by integration or rearranging the equipment. In this study, feasibility testing was performed using integrated heating and grinding equipment, to supplement the possible issue of generated powder and dust during the process. Previously, heat treatment and grinding devices were configured separately for pilot-scale testing. But some problems such as leakage and pipe blockage occurred during the transportation of generated fine powder, which caused difficulties in maintaining the equipment. For that reason, we studied to reduce the interface between the equipment by integrating and rearranging the equipment. To evaluate the thermal grinding performance, the fraction of coarse and concrete fines based on 1mm particle size was measured, and the amount of residual cement in each part was analyzed by wet analysis using 4M hydrochloric acid. The result was compared with previous studies and the thermomechanical equipment could be selected to enhance the process. Therefore, it is expected that the equipment for commercialization could be optimized and composed the process compactly by this study.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Concrete radioactive waste is divided into surface-contaminated concrete and activated concrete, and although the generation rate varies depending on the operating conditions of the nuclear power plant, it is reported that the amount of surface-contaminated concrete generated is greater. It is reported in the ‘US-NRC Inventory Report’ that 99% of radionuclides in surface-contaminated concrete are distributed within 1 mm of the surface. Since concrete radioactive waste accounts for a large amount of generation after metal radioactive waste, it is necessary to reduce the amount of radioactive waste disposal by applying appropriate treatment techniques to surface-contaminated concrete. In this study, a similar contamination environment work space with the size of 5.4 (W) × 3.6 (L) × 2.5 (H) [m] in which concrete specimens can be fixed on the wall and floor was established. And an integrated decontamination equipment was verified the automation performance for ‘location accuracy’, ‘radioactive contamination level measurement’ and ‘concrete surface laser scabbling’. It was confirmed that the average was 8.3 [mm] in the evaluation of the ‘location accuracy’ for the remote control and movement of the integrated decontamination equipment. For performance verification of ‘radioactive contamination level measurement’ and ‘laser scabbling’, it were used that size of 30×30×8 [cm] ordinary concrete specimens and concrete radioactively contaminated with Co-60 below the regulatory exemption concentration. ‘Radioactive contamination level measurement’ is measured as much as the set range, divied and display the measured values in different colors on the map of the control program. Ordinary concrete specimens are 0.066~0.089 μ Sv/hr, and contaminated concrete specimens are 0.107~0.121 μ Sv/hr, and it was confirmed that they are expressed in different colors on the map. For ‘laser scabbling’, the performance according to the laser scabbling speed and reproducibility with ordinary concrete specimens was verified. As a result, a weight change of up to 1.48 kg was confirmed. Contaminated concrete specimens were subjected to a direct method using a surface contamination detector and an indirect method using a smear paper to measure surface contamination before and after scabbling, and the debris generated after scabbling was analyzed using HPGe.
        3.
        2022.10 구독 인증기관·개인회원 무료
        A large amount of concrete radioactive waste is generated during the decommissioning of nuclear facilities, including nuclear power plants, and it is expected that the radioactive waste management expenses will be huge. In order to reduce the concrete radioactive waste, a decontamination or removal process is required, but working on concrete may present a risk of worker exposure in a high-radioactive space. Therefore, in this study, a remote control integrated decontamination equipment that can reduce concrete radioactive waste and ensure the safety of workers during the concrete decontamination process in a high-radioactive space was developed. The integrated decontamination equipment consists of remote movement, automatic surface contamination measurement, automatic surface decontamination and debris/dust removal systems. The remote movement system generates ‘mapping data’ of topographic features for the work space and ‘location data’ that coordinates the location of the integrated decontamination equipment through LiDAR (Light Detection and Ranging) sensor and SLAM (Simultaneous Localization And Mapping) technique. The user can check the location of the integrated decontamination equipment through ‘location data’ outside the work space, and can move it by remote control through wired/wireless communication. The automatic surface contamination measurement system uses a radiation detector and an automatic measurement algorithm to generate ‘surface measurement data’ based on the measurement distance interval and measurement time set by the user. ‘Surface measurement data’ is combined with ‘location data’ to create a visualized map of radioactive contamination, and users can intuitively realize the location and degree of contamination based on the map. The automatic surface decontamination system uses a laser and an automatic removal algorithm to decontaminate the concrete surface. Concrete debris and dust generated during this process were collected by the debris/dust removal system, minimizing waste generation and radiation exposure due to secondary pollution. The integrated decontamination equipment developed through this study was applied with technologies that reduced radioactive concrete waste and ensured the safety of workers. If technology verification and on-site applicability review are performed using concrete specimens simulating nuclear power plant or similar environments, it is reasoned to contribute to the domestic and overseas decommissioning industry.
        4.
        2017.04 서비스 종료(열람 제한)
        In this study, the integrated management code of damage information in bridges using the data from unmanned inspection equipment (i.e., drone with hybrid imaging equipment) was proposed. It was found that the integrated management code could be used in developing bridge management system based on 3-dimensional information model of bridge.
        5.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        In this study, the integrated management code of damage information in bridges using the data from unmanned inspection equipment (i.e., drone with hybrid imaging equipment) was proposed. It was found that the integrated management code could be used in developing bridge management system based on 3-dimensional information model of bridge.