To effectively assess the inventory of radionuclides generated from nuclear power plants using a consistent evaluation method across diverse groups, it is imperative to analyze the similarity in radioactive distribution between these groups. Various methodologies exist for evaluating this similarity, and the application of statistical approaches allows us to establish similarity at a specific confidence level while accounting for the dataset size (degrees of freedom). Initially, if the variance characteristics of the two groups are similar, a t-test for equal variances can be employed. However, if the variance characteristics differ, methods for unequal variances should be applied. This study delineates the approach for assessing the similarity in radioactive distribution based on the analytical characteristics of the two groups. Furthermore, it delves into the results obtained through two case studies to offer insights into the assessment process.
Currently, in domestic nuclear power plants (NPP), the spent filters (SFs) used for the purpose of reducing and purifying the radiation of the primary cooling water system are temporarily stored in an untreated state. In order to dispose of SFs, radioactive nuclide analysis (RNA) of SFs is required to be conducted. As segmented gamma scanner (SGS) is already being used in Kori NPP, utilizing SGS for RNA of SFs would be practical and economical. In this paper, factors required to be considered to improve accuracy of SGSs for RNA of SFs are studied. The analysis of the nuclide inventory of the packaging drum for radioactive waste should be performed by the indirect drum nuclide analysis method. The material of the SFs is iron (SS304) on the outside, and paper on the inside. In addition, to meet disposal acceptance criteria, radioactive waste drums are packaged in thick grouting or shielding drums. Therefore, it is necessary to derive an appropriate correction method for high inhomogeneity and thick media. Considering these factors, evaluating radionuclides inventory plans to measure gamma rays in SGS mode. Correct the gamma ray measurement by examining the medium attenuation factor and error factors. In this way, the inventory of gamma nuclides is calculated, and the specific radioactivity of beta ray and alpha particle emitting nuclides other than gamma rays is planned to be calculated by applying scaling factors.