검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pitch precursors affording excellent spinnability, high-level oxidation-resistance, and good carbonization yields were prepared by bromination–dehydrobromination of various ratios of pyrolyzed fuel oil and coal tar pitch. The pitches exhibited spinnabilities that were much better than those of pitches prepared via simple distillation. A pitch prepared using a 1:2 ratio of fuel oil and coal tar pitch exhibited the best tensile strength. Pitch fibers of diameter 8.9 ± 0.1 μm were stabilized at 270 °C without soaking time after heating at a rate of 0.5 °C/min and carbonized at 1100 °C for 1 h after heating at 5 °C/min. The resulting carbon fibers exhibited a tensile strength, elongation, Young’s modulus, and average diameter of 1700 ± 170 MPa, 1.6 ± 0.1%, 106 ± 37 GPa, and 7.1 ± 0.2 μm, respectively.
        4,000원
        2.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we tried to prepare an isotropic spinnable pitch which can be useful to prepare the general purpose carbon fiber through the co-carbonization of biomass tar with ethylene bottom oil under two different preparation methods (atmospheric distillation, pressurized distillation). The results showed that the ethylene bottom oil added co-carbonization was very effective to decrease of the oxygen contents for obtaining a stable spinnable pitch. The pressurized distillation was more effective to reduce the oxygen functional groups of pitches than atmospheric distillation. The obtained spinnable pitch by the pressurized distillation showed higher pitch yield of 42% and lower oxygen content of 9.12% than the spinnable pitch by the atmospheric distillation. The carbon fiber derived from the pressurized distillation spinnable pitch by carbonization at 800ºC for 5 min showed that the higher tensile strength of carbon fiber was increased up to 800 MPa.
        4,000원
        3.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Isotropic pitch-based fibers produced from coal tar pitch with the melt-blowing method were carbonized at temperatures ranging from 800 to 1600oC to investigate their crystalline structure and physical properties as a function of the carbonization temperature. The in-plane crystallite size (La) of the carbonized pitch fiber from X-ray diffraction increased monotonously by increasing the carbonization temperature resulting in a gradual increase in the electrical conductivity from 169 to 3800 S/cm. However, the variation in the d002 spacing and stacking height of the crystallite (Lc) showed that the structural order perpendicular to the graphene planes got worse in carbonization temperatures from 800 to 1200oC probably due to randomization through the process of gas evolution; however, structural ordering eventually occurred at around 1400oC. For the carbonized pitch powder without stabilization, structural ordering perpendicular to the graphene planes occurred at around 800–900oC indicating that oxygen was inserted during the stabilization process. Additionally, the shear stress that occurred during the melt-blowing process might interfere with the crystallization of the CPF.
        4,000원
        4.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, thermal treatment accompanied with different acid treatments was applied to a commercial coal tar pitch (CTP) to obtain a spinnable precursor pitch for carbon fiber. In the case of thermal treatment only, a relatively high reaction temperature of between 380˚C and 400˚C was required to obtain a softening point (SP) range of 220˚C-260˚C and many meso-phase particles were created during the application of high reaction temperature. When nitric acid or sulfuric acid treatment was conducted before the thermal treatment, the precursor pitch with a proper SP range could be obtained at reaction temperatures of 280˚C-300˚C, which were about 100˚C lower than those for the case of thermal treatment only. With the acid treatments, the yield and SP of the precursor pitch increased dramatically and the formation of meso-phase was suppressed due to the lower reaction temperatures. Since the precursor pitches with acid and thermal treatment were not spinnable due to the inhomogeneity of properties such as molecular weight distribution and viscosity, the CTP was mixed with ethanol before the consecutive nitric acid and thermal treatments. The precursor pitches with ethanol, nitric acid, and thermal treatments were easily spinnable, and their spinning and carbon fiber properties were compared to those of air blowing and thermal treated CTP.
        4,000원
        5.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Isotropic pitch fibers were stabilized and carbonized for preparing carbon fibers. To optimize the duration and temperature during the stabilization process, a thermogravimetric analysis was conducted. Stabilized fibers were carbonized at 1000, 1500, and 2000℃ in a furnace under a nitrogen atmosphere. An elemental analysis confirmed that the carbon content increased with an increase in the carbonization temperature. Although short graphitic-like layers were observed with carbon fibers heat-treated at 1500 and 2000℃, Raman spectroscopy and X-ray diffraction revealed no significant effect of the carbonization temperature on the crystalline structure of the carbon fibers, indicating the limit of developing an ordered structure of isotropic pitch-based carbon fibers. The electrical conductivity of the carbonized fiber reached 3.9×10⁴S/m with the carbonization temperature increasing to 2000℃ using a four-point method.
        4,000원
        6.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To manufacture a carbon/carbon composite the coal tar pitch was used as the matrix precursor and the PAN (polyacrylonitrile)-based carbon fiber was used as the reinforcing material to weave 3-directional preform. For pressure carbonization HIP equipment was used to produce a maximum temperature of 1000℃ and a maximum pressure of 100 MPa. The carbonization was induced by altering the dwell temperature between 250℃ and 420℃, which is an ideal temperature for the moderate growth of the mesophase nucleus that forms within the molten pitch during the pressure carbonization process. The application of high pressure during the carbonization process inhibits the mesophase growth and leads to the formation of spherical carbon particles that are approximately 30 nm in size. Most particles were spherical, but some particles were irregularly shaped. The spread of the carbon particles was larger on the surface of the carbon fiber than in the interior of the matrix pocket.
        4,000원
        7.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Among other filters such as light filter, wave filter, air filter, ultra filter and filter paper, a novel adsorption filter from thermostable polyester nonwoven fabrics immobilized with functional super activated carbon by means of quinoline soluble, activateable isotropic pitch binder were developed in this study. The activated carbon precursor is available in the market branded as coconut shell based activated carbon(CCS-AC) produced by Dongyang Carbon Co. Ltd. BET-surface area of this precursor was 1,355 m2/g, after KOH-activation it increased over 2,970 m2/g and was named as super activated carbon. In the preliminary research, this precursor was impregnated with PdCl2(0.188 wt%) KMnO4(3 wt%) and redox-agent(CuCl2, 0.577 wt%) in order to promote TOF up to 100/h and Selectivity up 99% and patented as a functional AC for the ethylene adsorption. The enhancement of the isotropic pitch binder to the AC-immobilized adsorption filter was BET-surface area upgraded by 266 m2/g and promoted the Iodine- and MB-adsorption by 1.4 times, respectively and also micro pore wide ranges 〈 5a~30 a 〉.
        3,000원
        8.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Short pitch fibers were prepared from petroleum based isotropic precursor pitch by melt-blown technology. The pitch fibers were stabilized in oxidizing condition, followed by steam activations at various conditions. The fiber surface and pore structures of the activated carbon fibers (ACFs) were respectively characterized by using SEM and applying BET theory from nitrogen adsorption at 77 K. The weight loss of the oxidized fiber was proportional to activation temperature and activation time, independently. The adsorption isotherms of the nitrogen on the ACFs were constructed and analyzed to be as Type I consisting of micropores mainly. The specific surface area of the ACFs proportionally increased with the weight loss at a given activation temperature. The specific surface area was ranged 850~1900 m2/g with pores of narrow distribution in sizes. The average pore size was ranged 5.8~14.1 a with the larger value from the more severe activation condition.
        4,000원
        9.
        2002.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Petroleum based isotropic pitch was spun into short fiber by melt-blown spinning technology. The processing parameters chosen were air velocity, die temperature, and throughput rate of the pitch within the ranges of experimental tolerances. The fiber diameter was reduced to 6μm by increases of hot air velocity, and spin die temperature. Also, the fiber diameter was strongly dependent on the throughput rate of the pitch and jet speed of hot air through the spinnerets. Even fibers with 10μm diameter were produced at throughput rate of 0.17g/min·hole and at die temperature of 290℃.
        4,000원
        10.
        2001.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A petroleum-based isotropic pitch fiber spun by melt-blown method was oxidized in air flow at various conditions. The oxidized pitch fiber obtained was tested for its infusibility and its elemental composition during the process of stabilization. The structural changes were traced by using solvent solubility, FT-IR spectroscopy, and elemental analysis. The samples showed a gradual increase in weight with increasing the oxidization temperature. The weight gain of sample oxidized at 320℃ for 10 min was about 4.5%. The concentration of the pyridine and toluene soluble fraction decreased with an increase in stabilization temperatures. The oxygen uptaken in the stabilization process converted aliphatic side chains into the carbonyl groups. As stabilization proceeded, the more ether and carboxylic acid groups were formed through the oxidations of aldehyde and primary alcohol, and then the carboxylic acid was dehydrated to be aromatic anhydride.
        4,000원