본 연구에서는 조이스틱을 이용하여 프로펠러와 타, 선수/선미 쓰러스터를 갖는 선박의 접이안을 위한 제어 알고리즘을 개발하였다. 조이스틱으로부터 전진 방향 및 회전 방향의 속도명령을 받아 전진 방향 및 회전 방향의 속도를 제어하는 MIMO(Multi-Input Multi-Output) 비선형 제어 알고리즘을 개발하기 위해 저속 조종수학모형을 사용하였다. 또한, 본 연구에서는 비선형 및 PID 제어기의 성능을 검증하기 위해 선박 접이안 가상 HILS(Hardware in the Loop Simulation) 프로그램을 구현하였다. HILS 프로그램은 LabWindow/CVI를 이용하여 개발하였으며, 사용자는 선박의 현재 위치와 원하는 궤적을 모니터를 통해 본 후 조이스틱을 이용하여 선박의 전진 방향 및 회전방향 속도를 제어함으로서 선박을 조종한다. 시뮬레이션 결과를 보면 비선형 제어기와 PID 제어기는 개루프 조이스틱 제어기보다 타와 쓰러스터의 입력 크기뿐 아니라 선박의 위치오차 면에서도 우수한 성능을 보였다.
Though the final goal of mobile robot navigation is to be autonomous, operators intelligent and skillful decisions are necessary when there are many scattered obstacles. There are several limitations even in the camera-based tele-operation of a mobile robot, which is very popular for the mobile robot navigation. For examples, shadowed and curved areas acnnot be viewed using a narrow view-angle camera, especially in bad weather such as on snowy or rainy days. Therefore, it is necessary to have other sensory information for reliable tele-operations. In this paper, sixteen ultrasonic sensors are attached around a mobile robot in a ring pattern to measure the distances to obstacles. Acollision vector is introduced in this paper as a new tool for obstacle avoidance, which is defined as a normal vector from an obstacle to the mobile robot. Based on this collision vector, a virtual reflection force is generated to avoid the obstacles and then the reflection force is transferred to an operator who is holding a joystick to control the mobile robot. Relying on the reflection force, the operator can control the mobile robot more smoothly and safely. For this bi-directional tele-operation, a master joystick system using a hall sensor was designed to resolve the existence of nonlinear sections, which are usual for a general joystick with two motors and potentiometers. Finally, the efficiency of a force reflection joystick is verified through the comparison of two vision-based tele-operation experiments, with and without force reflection.