본 논문에서는 다중 시그마포인트 세트(MSP)를 사용하는 분산점 칼만필터(UKF)인 UKF-MSP를 소개한다. 비선형 동적시스템을 표현하기 위해 널리 알려진 Bouc-Wen 모델을 사용하였고, 비선형성 고려가 가능한 칼만필터 중 UKF를 선정하였다. 그런데 UKF는 두 가지 인공오차와 시그마포인트의 분포를 결정하는 스케일링 파라미터의 값을 튜닝(Tuning)하는 과정을 통해 적절히 설정해야만 대상 동적시스템의 추정하고자 하는 상태(State)를 정확히 추정할 수가 있다. 본 논문에서는 후자의 스케일링 파라미터 설정 문제를 완화하고자 하였으며, MSP를 사용함으로써 기존 UKF에 비해 칼만필터 튜닝 과정에 덜 민감한 UKF-MSP를 제안하였다. 지진으로 인한 급격한 구조손상 시나리오에 대해 UKF-MSP의 안정성을 검증하였다. 제안된 방법은 튜닝과정을 완화함과 동시에 다른 칼만필 터 파라미터인 인공오차에 대해서도 덜 민감한 거동을 보임을 확인하였다.
In this study, we present an algorithm for indoor robot position estimation. Estimating the position of an indoor robot using a fixed imaging device obviates the need for complex sensors or hardware, enabling easy estimation of absolute position through marker recognition. However, location estimation becomes impossible when the device moves away from the surrounding obstacles or the screen, presenting a significant drawback. To solve this problem, we propose an algorithm that improves the precision of robot indoor location estimation using a Gaussian Mixture Model(GMM) and a Kalman filter estimation model. We conducted an actual robot operation experiment and confirmed accurate position estimation, even when the robot was out of the image.
PURPOSES: The intensiveness of highway management has increased owing to the growth in the number of vehicles and the rapid climate change. The disadvantages produced by these factors can affect management time and cost. Serious traffic accidents and traffic jam may be experienced when snow fall accumulates on highway surfaces and the friction between tires and pavements is lower than that in the general state, in a non-management condition. Such conditions need intensive management. In this regard, one of the spread methods used for the melting material is pre-wetted salt (PWS), which is the frequently used method in South Korea. In the PWS method, the solid material with CaCl2 is mixed with water in 30% concentration and then finally mixed with NaCl before application to pavements. The chloride-type melting material not only is cheaper, but also has a high melting property than the others. It can shorten the pavement or structure life by deterioration and corrosion. This melting material can affect the flora near the highways; hence, an eco-friendly de-icing agent must be utilized considering the environmental effect.
METHODS : The Kalman filter algorithm (KFA) was utilized herein to develop optimization models using the performed test data. The KFA, which was developed from recursive filter algorithms, such as the low- and high-pass filters, applies a weighting filter to the Kalman filter. The algorithm has the property of utilizing the filter and updated estimations. In this regard, melting tests were performed for the real applicative utilization of de-icing agents. The KFA was also applied to reduce the error rates and optimize the relationships between the test data and the predictions.
RESULTS: Comparing the measurements performed, the error was reduced by 1.69 g when the KFA was applied. Moreover, the error can be optimized to approximately 91.4% compared to the test errors. The prediction data had over 85% tendency in the test measurement, showing that the KFA application can reduce the error and increase the tendency. By comparison, the agent with CaCl2 showed the best ice melting performance within 10 min without surface temperature. However, the PWS with a 25% concentration indicated the best water melting performance from start to end of the test time, implying that this is a powerful agent in terms of performance.
CONCLUSIONS : The melting test is an artificial test method; therefore, it can generate a huge error from the test. The error and the tendency can be controlled by tracking the measurement error and the white noise matrix using the KFA. A further research will be performed to track the measurement error and the white noise matrix. Other optimization methods will also be applied to reduce the experimental error.
2020년 1월 1일부터 국제해사기구(IMO)는 전 세계 모든 해역을 지나가는 선박을 대상으로 선박연료유의 황 함유량 상한선을 3.5 %에서 0.5 %로 낮춰 선박으로 인해 발생하는 대기오염을 줄이기 위한 강력한 규제를 실시한다. 황 함유량이 낮은 연료유를 사용하여 대기오염 물질을 줄이는 것도 중요하지만 선박을 경제적으로 운영하여 불필요한 에너지 낭비를 줄이는 것 또한 대기오염 물질을 줄이는 데 큰 도움이 된다. 따라서 선박은 잡음의 영향을 받더라도 항로를 정확하게 유지하여야 한다. 항로를 정확하게 추종하기 위해 오토파일럿 시스템이 사용되지만 오토파일럿 시스템의 성능이 아무리 우수하다 하더라도 잡음의 영향을 받게 된다면 성능에 한계를 가진다. 실제 환경에서는 자이로스코프에서 측정잡음이 더해진 회두각이 오토파일럿 시스템의 입력으로 들어가 오토파일럿 시스템의 성능을 저하시킨다. 이와 같은 문제를 해결하기 위해 상태추정에 쓰이는 Kalman Filter를 적용하여 잡음의 영향을 줄여주는 기법이 있지만 이 또한 역시 잡음의 영향을 완전히 제거시키는 것이 불가능하다. 따라서 본 논문에서는 잡음제거 성능을 더욱 더 개선시키기 위해 전진방향 구간에서는 인공지능 기술 중 하나인 다층퍼셉트론(Multi-Layer Perceptron; MLP)를 적용하고, 회전구간에서는 Kalman Filter를 적용하여 Kalman Filter만을 사용한 경우보다 우수한 잡음제거 기법을 제안한다. 시뮬레이션을 통해 제안한 방법이 Kalman Filter만을 사용한 경우보다 조타기의 오동작을 방지하여 선박의 전진방향 운동이 개선됨을 확인할 수 있다.
The damage detection method using the extended Kalman filter(EKF) technique has been continuously used since EKF can estimation the responses of the damaged building structure and the stiffness of the structure. However, in the use of EKF, the requirement of setting the initial paramters P, Q, and R has caused the divergence and instability of the state vector, and various researches have been conducted to determine theses parameters. In this paper, adaptive extended Kalman filter(AEKF) method is proposed to solve the problem of setting the values of P, Q, and R, which are important parameters determining the convergence performance of the EKF state vector. By using the AEKF method proposed in this study, the P, Q, and R parameters are updated every k steps. The proposed algorithm is applied for the estimation of stiffness and the damage detection of 3-DOF problem. Based of the verification, it can be found that the selection process for the values of P, Q, and R can improve the convergence performance of EKF.
본 논문에서는 이단계 칼만필터를 활용한 구조물의 3 자유도 동적변위 계측 시스템을 소개한다. 개발 시스템은 센서 모듈, 베이스 모듈, 컴퓨테이션 모듈로 구성되어 있다. 센서 모듈은 100Hz 샘플주파수의 고정밀 가속도를 계측하는 포스피드백 가 속도계와 10Hz의 샘플주파수의 저정밀도의 속도, 변위를 계측하는 저가의 RTK-GNSS로 구성되어 있다. 계측된 데이터는 LAN 케이블을 통하여 컴퓨테이션 모듈로 전송되고, 컴퓨테이션 모듈에서 이단계 칼만필터를 활용하여 100Hz 샘플주파수의 고정밀 변위를 실시간으로 산정한다. 개발 시스템의 변위 계측 정밀도를 검증하기 위해 미국, 캘리포니아에 위치한 San Francisco-Oaklmand Bay bridge 에서 현장 실험을 수행하였으며, 실험 결과 1.68mm RMS 오차를 보임을 확인하였다.
The key motivation of this study is for a style of the sensor arrangement to have an effect on the localization performance of mobile robots in case of using sonar sensors. In general robot platforms with sonar sensors, sonar sensors are supposed to be radially arranged on their rotational axis of mobile robots. However, relevant limits to several functions required for their autonomous navigation occur unexpectedly, because a sonar sensor generally has the negative nature of its wide beam width together with the specular reflection. We present a new strategy of the sonar sensor arrangement capable of enhancing the localization performance. Sonar sensors are intended to be arranged nonradially (twistedly expressed in this paper) on their rotational axis. The localization scheme called STARER: Sonar-Twisted ARrangement localizER is based on the extended Kalman filter (EKF) with occupancy grid maps. Experimental results demonstrate the validity and robustness of the proposed method for the localization of mobile robots.
풍력 자원의 단기 예측 가능성은 풍력 발전 단지의 경제적 타당성을 평가하는 중요한 요소이다. 본 연구에서는 풍력 자원의 단기 예측 가능성을 향상시키는 방법의 하나로 베이지안 칼만 필터를 후처리 과정으로 적용하였다. 이때 추정된 모델과 관측 데이터의 상관관계를 평가하기 위하여 일정 시간 동안 베이지안 칼만 훈련 기간이 요구된다. 본 연구는 여러 훈련 기간에 따라 예측 특성을 정량적으로 분석하였다. 태백 지역에서는 3일 단기 베이지안 칼만 훈련으 로 기온과 풍속을 예측하는 것이 다른 훈련 기간을 적용할 때보다 우수한 예측 성능을 보였다. 반면 이어도는 6일 이 상의 베이지안 칼만 필터의 훈련 기간을 적용한 경우 가장 좋은 예측 성능을 나타낸다. WRF 예측 성능이 떨어지는 사 례에서 베이지안 칼만 필터의 예측 성능향상이 뚜렷하게 나타나며, 반대로 WRF 예측이 정확한 지점에서는 필터적용에 따른 성능향상 정도가 약한 경향을 가진다.
PURPOSES: This study is to predict the Sound Pressure Level(SPL) obtained from the Noble Close ProXimity(NCPX) method by using the Extended Kalman Filter Algorithm employing the taylor series and Linear Regression Analysis based on the least square method. The objective of utilizing EKF Algorithm is to consider stochastically the effect of error because the Regression analysis is not the method for the statical approach. METHODS: For measuring the friction noise between the surface and vehicle’s tire, NCPX method was used. With NCPX method, SPL can be obtained using the frequency analysis such as Discrete Fourier Transform(DFT), Fast Fourier Transform(FFT) and Constant Percentage Bandwidth(CPB) Analysis. In this research, CPB analysis was only conducted for deriving A-weighted SPL from the sound power level in terms of frequencies. EKF Algorithm and Regression analysis were performed for estimating the SPL regarding the vehicle velocities. RESULTS : The study has shown that the results related to the coefficient of determination and RMSE from EKF Algorithm have been improved by comparing to Regression analysis. CONCLUSIONS : The more the vehicle is fast, the more the SPL must be high. But in the results of EKF Algorithm, SPLs are irregular. The reason of that is the EKF algorithm can be reflected by the error covariance from the measurements.
As more computer game integrates with video and working under mobile environments, it requires seamless bandwidth limited video transport environment including integrated game video compression and real time video conference between game users. Video transmission system consists of encoder and decoder. In communication environment, when the encoder transmits the stream data to the decoder, the bit-stream is alternated or lost because of various channel noises. Altered and lost bit-stream data cause the loss of the video data intensity value or motion vector (MV) value. These lost data cause serious damage of the video quality. In this paper, we propose MV recovery method because MV is essential information to keep the better video quality. To recover the lost MV, we use adjacent block’s MV as input data of Kalman filter to estimate the optimized value for current block’s lost MV. In our experimentation with the standard video image: Mobile&Calendar and Susie, our proposed method achieved 0.497dB ~ 1.898dB improvements on video quality over no MV recovery and achieved average 0.03dB ~ 0.725dB improvements over SRMC scheme.
본 논문은 축소 3층 건물의 최상층에 능동질량형 제어장치를 설치한 시스템에 관한 식별실향분석이다. OKID기법을 적용하여 진동대 및 제어장치의 가진 입력과 건물 및 제어장치의 응답인 출력관계를 분석하여 수학모델을 구하였다. 제어장치가 설치된 건물에 관한 입력은 진동대에 의한 지반가속도와 제어장치 모터의 구동신호이다 그리고 출력은 건물 각층과 제어장치의 가속도이다. 입출력 관계로 구하여진 수학모델을 바탕으로 제어장치의 최적설계를 수행하였으며 수치해석과 실험결과를 비교한바 서로 일치함을 확인할 수 있었다.
In this paper, a study of 2-step damage detection for space truss structures using the extended Kalman filter theory is presented. Space truss structures are composed of many members, so it is difficult to find damaged member from the whole system. Therefore, 2-step damage identification method is applied to detect the damaged members. First, kinetic energy change ratio is used to find damage region including damaged member and then detect damaged member using extended Kalman filtering algorithm in damage region. The effectiveness of proposed method is verified through the numerical examples.
“Tracking” here refers to the estimation of a moving object with some degree of accuracy where at least one measurement is given. The measurement, which is the sensor-obtained output, contains systemic errors and errors that are due to the surrounding environment. Tracking filters play the key role of the target-state estimation after the updating of the tracking system; therefore, the type of filter that is used for the conduction of the estimations is crucial in the determining of the reliability of the updated value, and this is especially true since the performances of different filters vary when they are subjected to different environmental and initial conditions. The purpose of this paper is the conduction of a comparison between the performances of the α-β-γ filter and the Kalman filter regarding an ARPA-system tracking module that is used on board high-dynamic warships. The comparison is based on the capability of each filter to reduce noise and maintain a stable response. The residual error is computed from the difference between the true and predicted positions and the true and estimated positions for the given sample. The results indicate that the tracking accuracy of the Kalman filter is higher compared with that of the optimal α-β-γ filter; however, the response of the optimal α-β-γ filter is more stable.
Recently, as the awareness of safety has become more important, studies on damage assessment techniques for building structures have been actively conducted. The damage of the building structure is caused by the decrease of the stiffness which is inherent dynamic characteristic of the structural system, and the decrease of stiffness acts as a direct variable connected to the collapse of the structure. there have been developed techniques for estimating the inherent dynamics of a structure to identify and evaluate damage to the structure. In this study, we estimate the layer mass due to the modeling error through the optimization algorithm, Genetic Algorithm, and use the optimization algorithm GA to optimize the error covariance matrix, system noise and measured noise covariance matrix We propose an optimal state estimation algorithm. The objective function of the GA algorithm is obtained by the residual which is the difference between the measured values obtained from the EKF calculation and the values obtained from the system model. We verified the feasibility of the algorithm through a 4-DOF system.
Measurement of dynamic displacement of large structure is one of the most challenging issues in structural health monitoring. With a Kalman filter based technique, the proposed displacement measurement system which consists of GPS-RTK, accelerometer, DAQ, and computer shows the huge potential for precise measurement of dynamic displacement of large structure. The performance of the system has been verified by modal shaker test. This paper presents a new system for dynamic and pseudostatic displacement measurement for a large-scale civil infrastructure. Even though dynamic displacement measurement on a large-scale structure is one of the most challenging issues in structural health monitoring, traditional displacement sensors as well as cutting edge noncontact sensors suffers from the lack of accuracy and precision due to field conditions such as measurement distance and requirement for a fixed support. With a Kalman filter based technique, the proposed displacement measurement system, which consists of a GPS-RTK, accelerometer, DAQ and computer, efficiently estimates bias contained in the acceleration record by fusing the acceleration with intermittently recorded GPS-RTK data, and estimate high precision and high accuracy displacement by removing the bias from the acceleration record and conducting double integration. Through a series of lab-scale tests using a vibration exiciter, the performance of the system has been verified and shows the potential for accurate and precise measurement of dynamic displacement of a large-scale structure.
사회기반시설물의 안전성을 효과적으로 평가하고 모니터링하기 위해 무선 스마트 센서가 개발되어 전 세계적으로 연구가 진행되 고 있다. 무선 스마트 센서는 통상 계측 및 임베디드 데이터 연산, 무선 통신이 가능한 공통점을 갖고 있어 기존의 유선 기반 센서가 가진 단점을 극복할 수 있을 것으로 기대되고 있다. 그러나 구조물의 장기 모니터링의 경우 내구성이 충분하지 못해 발생하는 센서 고장이나, 환경적 이유 로 인한 무선 통신이 불안정할 경우 계측 데이터를 가져올 수 없는 문제가 발생할 수 있다. 본 연구에서는 무선 스마트 센서 기반의 네트워크에 서 이와 같은 문제로 센서 노드에 무선 통신으로 접근할 수 없는 경우를 대처하기 위해, 칼만 필터 기반의 데이터 복구를 수행하여 무선 스마트 센서 네트워크의 신뢰성을 향상시키는 기법을 제안한다. 본 논문에서는 무선 스마트 센서의 연산 기능을 활용하여 네트워크 내에서 계측된 가 속도 데이터를 바탕으로 유실된 센서의 가속도 계측 데이터를 추정한다. 개발된 무선 스마트 센서 네트워크 시스템의 성능을 확인하기 위해 단 순보 구조에서 실험을 수행하여 추정된 가속도 응답과 계측 값을 비교하였다.
Scouring of bridge foundation is one of the major cause of bridge failure. Scour can be defined as the excavation of foundation or other material from the bed and banks of streams, due to water flow. Scour monitoring is one of the major requirements to ensure bridge safety. There are some underwater instruments such as float-out devices which are used in scour monitoring. The available conventional underwater instruments are expensive and difficulties in maintenance. Thus vibration based monitoring techniques are emerging, this paper is one of such effort. This paper develops a vibration-based scour monitoring technique. The effect of sour on the vibration characteristics of pier is not significant at the early stages of scouring but significant changes in vibration characteristic can be identified during moderate level of scour. Thus this method can be used to identify and alert the safety of bridge prior its failure. An Extended Kalman filter is employed in this process. This paper numerically validates the monitoring capability of developed method over other vibrations based methods.