This study aims to estimate the scope of damage impact with a real-life explosion case and a damage prediction program (ALOHA) and suggest measures to reduce risk by comparing and analyzing the results using a Probit model. After applying it to the ALOHA program, the toxicity, overpressure, and radiant heat damage of 5 tons of storage scopes between 66 to 413 meters, and the real-life case also demonstrated that most of the damage took place within 300 meters of the LPG gas station. In the Probit analysis, the damages due to radiant heat were estimated as first-degree burns (13-50%), while structural damage (0-75%) and glass window breakage (94-100%) were expected from overpressure, depending on the storage volume. After comparing the real-life case and the damage prediction program, this study concluded that the ALOHA program could be used as the scope of damage impacts is nearly the same as the actual case; it also concluded that the analysis using the Probit model could reduce risks by applying calculated results and predicting the probability of human casualties and structural damages.
The purpose of this study is to compare and analyze the impact range of explosion damage due to gas leaks at LPG filling stations, focusing on propane and butane, which are components of vehicle LPG. The scenarios were designed based on the explosion incident at an LPG filling station in Gangwon-do, where an actual gas leak accident occurred, resulting in Scenario I and Scenario II. The ALOHA program, developed by the U.S. National Oceanic and Atmospheric Administration (NOAA), was used as the tool to analyze the impact range of the explosion damage for both substances. The results of the study indicated that, under identical conditions, propane had a wider impact range of damage than butane. This is presumed to be due to the greater explosion energy of propane, attributable to its physicochemical properties. Therefore, when preparing for LPG leak accidents, measures for propane need to be prioritized. As safety measures for propane, two suggestions were made to minimize human casualties. First, from a preventive perspective, it is suggested to educate workers about propane. Second, from the perspective of response measures and damage minimization, it is suggested to thoroughly prepare emergency evacuation and rescue plans, evacuation routes, designated shelters, and emergency response teams. This study compares and analyzes the impact range of radiative heat damage based on LPG components. However, hazardous accidents are critically influenced by the type of leaking substance, the form of the leak, and meteorological factors affecting the diffusion pattern of the substance. Therefore, for future research, it is proposed to model various leakage scenarios for the same substance to conduct a comprehensive risk assessment.