To prevent environmental pollution caused by leakage of leachate from waste landfill, vinyl acetate-ethylene (VAE) resin is applied to liner and cover materials to improve their performance. Styrene, styrene butadiene rubber, and VAE are widely used as polymer resins that have excellent water resistance and durability. Further, VAE resin is known to have additional advantages such as adhesion to nonpolar materials and resistance to saponification as a copolymer. In this study, the effect of VAE content on the properties of liner and cover materials was studied. The water and air content ratios, bending and compressive strengths, water absorption ratio, and coefficient of permeability of these materials were measured. The liner and cover materials with 4 wt% VAE showed good properties.
At present research on mining backfill materials is being carried out to prevent ground subsidence and breaking by underground cavern of exhausted mines. However, backfill materials can cause secondary environmental issues such as ground pollution. To solve these issues, liner and cover materials are constructed before backfill materials constructed, to inhibit toxic substances form moving to the surroundings. Liner and cover materials, however, should have an accelerating performance after construction and when the accelerating performance is degraded, the work efficiency can be lowered, and the construction cost can be increased, by many rebound content. Therefore, this study develops mining liner and cover materials, and evaluates their accelerating performance and physical properties of liner and cover materials by types and content of accelerating agent. In case of aluminate accelerating agent, it is mixed with more than 5% of liner and cover materials(binder/ratio); thus an accelerating performance satisfying Korean Industrial Standards(KS) occurs, and in case of alkali-free accelerating agent, when it is mixed with more than 7%(binder/ratio), accelerating performance satisfying KS occurs. The more the accelerating agent capacity increases, the more compressive strength decreases. In addition, it is confirmed that compressive strength of aluminate accelerating agent is more degraded than compressive strength of the alkali-free accelerating agent. It is also confirmed that drying shrinkage stability of the alkali-free accelerating agent is better than the drying shrinkage stability of the aluminate accelerating agent.