검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A series of ZIF-67-C-IL catalysts were prepared using ZIF-67 and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ([ BMIM]NTf2) ionic liquid as precursors. The structure of the catalysts was characterized by XRD, TEM, SEM and XPS. The catalytic performance of the catalysts for the oxygen reduction reaction (ORR) was evaluated in a three-electrode system. The results confirmed that the high-temperature treatment of the precursors resulted in the formation of N, S codoped carbon-encapsulated Co9S8 nanoparticles. To create N, S co-doped carbon coated Co9S8 nanoparticle catalysts, ionic liquids are used as sulfur and nitrogen sources. The catalytic activity of ORR can be improved using N, S co-doped carbon to prevent the aggregation of Co9S8 nanoparticles. Graphitized and N, S co-doped carbon shells are optimal for achieving high activity stability. Optimal 600-ZIF-67-C(1:1.5)-30IL catalytic activity was observed for ORR. The half-wave potential of ORR was 0.88 V vs. RHE in 0.1 mol L− 1 KOH, with a limit current density of 4.70 mA cm− 2. Similar ORR electrocatalytic activity was observed between this catalyst and commercial Pt/C (20 wt%).
        4,000원
        6.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitrogen (N)-doped ordered mesoporous carbons (OMCs) with a dual transition metal system were synthesized as non-Pt catalysts for the ORR. The highly nitrogen doped OMCs were prepared by the precursor of ionic liquid (3-methyl-1-butylpyridine dicyanamide) for N/C species and a mesoporous silica template for the physical structure. Mostly, N-doped carbons are promoted by a single transition metal to improve catalytic activity for ORR in PEMFCs. In this study, our N-doped mesoporous carbons were promoted by the dual transition metals of iron and cobalt (Fe, Co), which were incorporated into the N-doped carbons lattice by subsequently heat treatments. All the prepared carbons were characterized by via transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). To evaluate the activities of synthesized doped carbons, linear sweep was recorded in an acidic solution to compare the ORR catalytic activities values for the use in the PEMFC system. The dual transition metal promotion improved the ORR activity compared with the single transition metal promotion, due to the increase in the quaternary nitrogen species from the structural change by the dual metals. The effect of different ratio of the dual metals into the N doped carbon were examined to evaluate the activities of the oxygen reduction reaction.
        4,300원
        7.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        악취저감과 분뇨의 액비화 및 돈사 환경개선을 위한 액비순환시스템을 적용한 양돈장의 악취저감 효과를 평가하기 위하여 액비순환시스템 적용 양돈장과 일반 양돈장에서 슬러리와 액비의 성상과 공기 중 및 액상시료 중 악취물질 농도를 조사하여 비교하였다. 일반농장에 비하여 액비순환시스템 적용 농장의 슬러리 성상이 현저하게 발효가 진행되고 있는 것으로 나타났으며 순환적용 농장 간에는 차이가 없는 것으로 나타났다. 돈사내부와 배출구 및 부지경계선에서의 직접관능법에 의한 악취강도 평가에서는 액비순환시스템 적용으로 분명한 악취저감 효과가 인정되었으며, 돈사내부 환경개선 효과 또한 분명하게 나타났다. 돈사내부와 배출구 및 부지경계선에서의 공기 중 암모니아와 황화수소 농도는 액비순환시스템 적용으로 50% 이상의 저감 효과가 나타났으며, 메틸머캅탄과 트리메틸아민 역시 비교적 낮은 수준으로 조사되었다. 순환단계별 액상시료 중 악취물질 차이는 분명하게 나타나지 않았다.
        4,000원
        8.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Spherical fine cobalt powders were fabricated by new liquid reduction method. Commercial cobalt sufate heptahydrate was used as raw material. Also ethylene glycol was used as solvent and hydrazine-sodium hypophosphite mixture was used as reduction agent for the new liquid reduction method. A plate shaped cobalt powders with an approximately 300 nm were prepared by a traditional wet ruduction method using distilled water as solvent and hydrazine. Spherical fine cobalt powders with an average size of 1-3 μm were synthesized by a new liquid reduction method in 0.3M cobalt sulfate and 1.5M hydrazine-0.6M sodium hypophosphite mixture at 333K.
        4,000원
        9.
        2012.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Platinum(Pt) nanoparticles were synthesized by using polyol process which is one of the liquid phase reduction methods. Dihydrogen hexachloroplatinate (IV) hexahydrate , as a precursor, was dissolved in ethylene glycol and silver nitrate () was added as metal salt for shape control of Pt particle. Also, polyvinylpyrrolidone (PVP), as capping agent, was added to reduce the size of particle and to separate the particles. The size of Pt nanoparticles was evaluated particle size analyzer (PSA). The size and morphology of Pt nanoparticles were observed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Synthesized Pt nanoparticles were studied with varying time and temperature of polyol process. Pt nanoparticles have been successfully synthesized with controlled sizes in the range 5-10 and 20-40 nm with cube and multiple-cube shapes.
        4,000원
        10.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanostructured cobalt materials have recently attracted considerable attention due to their potential applications in high-density data storage, magnetic separation and heterogeneous catalysts. The size as well as the morphology at the nano scale strongly influences the physical and chemical properties of cobalt nano materials. In this study, cobalt nano particles synthesized by a a polyol process, which is a liquid-phase reduction method, were investigated. Cobalt hydroxide (Co(OH)2), as an intermediate reaction product, was synthesized by the reaction between cobalt sulphate heptahydrate (CoSO4·7H2O) used as a precursor and sodium hydroxide (NaOH) dissolved in DI water. As-synthesized Co(OH)2 was washed and filtered several times with DI water, because intermediate reaction products had not only Co(OH)2 but also sodium sulphate (Na2SO4), as an impurity. Then the cobalt powder was synthesized by diethylene glycol (DEG), as a reduction agent, with various temperatures and times. Polyvinylpyrrolidone (PVP), as a capping agent, was also added to control agglomeration and dispersion of the cobalt nano particles. The optimized synthesis condition was achieved at 220˚C for 4 hours with 0.6 of the PVP/Co(OH)2 molar ratio. Consequently, it was confirmed that the synthesized nano sized cobalt particles had a face centered cubic (fcc) structure and with a size range of 100-200 nm.
        4,000원
        11.
        2004.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultrafine titanium carbide particles were synthesized by the reaction of liquid-magnesium and vaporized TiCl+CCl(x = 1 and 2) solution. Fine titanium carbide particles with about 50 nm were successfully produced by combining Ti and C atoms released by chloride reduction of magnesium, and vacuum was then used to remove the residual phases of MgCl and excess Mg. Small amounts of impurities such as O, Fe, Mg and Cl were detected in the product, but such problem can be solved by more precise process control. The lattice parameter of the product was 0.43267 nm, near the standard value. With respect to the reaction kinetics, the activation energy for the reactions of TiCl+CCland Mg was found to 69 kJ/mole, which was about half value against the use of TiCl+CCl, and such higher reactivity of the former contributed to increase the stoichiometry until the level of TiC and decrease the free carbon content below 0.3 wt.%.
        4,000원