검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        2.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        내화 구조물에서는 환기 계수, 재료 탄성 계수, 항복 강도, 열팽창 계수, 외력 및 화재 위치에서 불확실성이 관찰된다. 환기 불확실성 은 화재 온도에 영향을 미치고, 이는 다시 구조물 온도에 영향을 미친다. 이러한 온도는 재료 특성과 함께 불확실한 구조적 응답으로 이어지고 있다. 화재 시 구조적 비선형 거동으로 인해 몬테카를로 시뮬레이션을 사용하여 화재 취약성을 계산하는데, 이는 시간이 많 이 소요된다. 따라서 머신러닝 알고리즘을 활용해 화재 취약성 분석을 예측함으로써 효율성을 높이고 정확성을 확보하려는 연구가 진행되고 있다. 이 연구에서는 화재 크기, 위치, 구조 재료 특성의 불확실성을 고려하여 철골 모멘트 골조 건물의 화재 취약성을 예측 했다. 화재 시 비선형 구조 거동 결과를 기반으로 한 취약성 곡선은 로그 정규 분포를 따른다. 마지막으로 제안한 방법이 화재 취약성 을 정확하고 효율적으로 예측할 수 있음을 보여주었다.
        4,000원
        3.
        2023.10 구독 인증기관·개인회원 무료
        A causality exists between insect density and plant health, where plant health is affected by both the plant’s potential and environmental factors. In other words, causality is possible between insect density and environmental factors, allowing for the analysis of insect density based on these environmental factors. Machine learning enables studying insect density alongside environmental factors, providing insights into the causality between insects, the environment, and plant health. Machine learning is a methodology that involves the design of models by learning patterns from input data. This study aims to predict F. occidentalis density by sampling environmental factors and applying them to machine learning models.
        4.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nowadays, artificial intelligence model approaches such as machine and deep learning have been widely used to predict variations of water quality in various freshwater bodies. In particular, many researchers have tried to predict the occurrence of cyanobacterial blooms in inland water, which pose a threat to human health and aquatic ecosystems. Therefore, the objective of this study were to: 1) review studies on the application of machine learning models for predicting the occurrence of cyanobacterial blooms and its metabolites and 2) prospect for future study on the prediction of cyanobacteria by machine learning models including deep learning. In this study, a systematic literature search and review were conducted using SCOPUS, which is Elsevier’s abstract and citation database. The key results showed that deep learning models were usually used to predict cyanobacterial cells, while machine learning models focused on predicting cyanobacterial metabolites such as concentrations of microcystin, geosmin, and 2-methylisoborneol (2-MIB) in reservoirs. There was a distinct difference in the use of input variables to predict cyanobacterial cells and metabolites. The application of deep learning models through the construction of big data may be encouraged to build accurate models to predict cyanobacterial metabolites.
        4,300원
        5.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we propose a method for diagnosing overload and working load of collaborative robots through performance analysis of machine learning algorithms. To this end, an experiment was conducted to perform pick & place operation while changing the payload weight of a cooperative robot with a payload capacity of 10 kg. In this experiment, motor torque, position, and speed data generated from the robot controller were collected, and as a result of t-test and f-test, different characteristics were found for each weight based on a payload of 10 kg. In addition, to predict overload and working load from the collected data, machine learning algorithms such as Neural Network, Decision Tree, Random Forest, and Gradient Boosting models were used for experiments. As a result of the experiment, the neural network with more than 99.6% of explanatory power showed the best performance in prediction and classification. The practical contribution of the proposed study is that it suggests a method to collect data required for analysis from the robot without attaching additional sensors to the collaborative robot and the usefulness of a machine learning algorithm for diagnosing robot overload and working load.
        4,300원
        8.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we performed algorithms to predict algae of Chlorophyll-a (Chl-a). Water quality and quantity data of the middle Nakdong River area were used. At first, the correlation analysis between Chl-a and water quality and quantity data was studied. We extracted ten factors of high importance for water quality and quantity data about the two weirs. Algorithms predicted how ten factors affected Chl-a occurrence. We performed algorithms about decision tree, random forest, elastic net, gradient boosting with Python. The root mean square error (RMSE) value was used to evaluate excellent algorithms. The gradient boosting showed 10.55 of RMSE value for the Gangjeonggoryeong (GG) site and 11.43 of RMSE value for the Dalsung (DS) site. The gradient boosting algorithm showed excellent results for GG and DS sites. Prediction value for the four algorithms was also evaluated through the Receiver operating characteristic (ROC) curve and Area under curve (AUC). As a result of the evaluation, the AUC value was 0.877 at GG site and the AUC value was 0.951 at DS site. So the algorithm‘s ability to interpret seemed to be excellent.
        4,300원
        9.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선박이 접안할 때 발생하는 접안에너지에 가장 영향력이 큰 요소는 접안속도이며, 과도한 경우 사고로 이어질 수 있다. 접안속도의 결정에 영향을 미치는 요소는 다양하지만 기존 연구에서는 일반적으로 선박 크기에 제한하여 분석하였다. 따라서 본 연구에서는 다양한 선박 접안속도의 영향요소를 반영하여 분석하고 그에 따른 중요도를 도출하고자 한다. 분석에 활용한 데이터는 국내 한 탱커부두의 선박 접안속도를 실측한 것을 바탕으로 하였다. 수집된 데이터를 활용하여 머신러닝 분류 알고리즘인 의사결정나무(Decision Tree), 랜덤포 레스트(Random Forest), 로지스틱회귀(Logistic Regression), 퍼셉트론(Perceptron)을 비교분석하였다. 알고리즘 평가 방법으로는 혼동 행렬에 따른 모델성능 평가지표를 사용하였다. 분석 결과, 가장 성능이 좋은 알고리즘으로는 퍼셉트론이 채택되었으며 그에 따른 접안속도 영향 요인의 중요도는 선박 크기(DWT), 부두 위치(Jetty No.), 재화상태(State) 순으로 나타났다. 이에 따라 선박 접안 시, 선박의 크기를 비롯하여 부두 위치, 재화 상태 등 다양한 요인을 고려하여 접안속도를 설계하여야 한다.
        4,000원
        11.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES:This study suggests a specific methodology for the prediction of road surface temperature using vehicular ambient temperature sensors. In addition, four kind of models is developed based on machine learning algorithms.METHODS:Thermal Mapping System is employed to collect road surface and vehicular ambient temperature data on the defined survey route in 2015 and 2016 year, respectively. For modelling, all types of collected temperature data should be classified into response and predictor before applying a machine learning tool such as MATLAB. In this study, collected road surface temperature are considered as response while vehicular ambient temperatures defied as predictor. Through data learning using machine learning tool, models were developed and finally compared predicted and actual temperature based on average absolute error.RESULTS:According to comparison results, model enables to estimate actual road surface temperature variation pattern along the roads very well. Model III is slightly better than the rest of models in terms of estimation performance.CONCLUSIONS :When correlation between response and predictor is high, when plenty of historical data exists, and when a lot of predictors are available, estimation performance of would be much better.
        4,000원
        12.
        2020.06 KCI 등재 서비스 종료(열람 제한)
        This paper studied the collision detection of robot manipulators for safe collaboration in human-robot interaction. Based on sensor-based collision detection, external torque is detached from subtracting robot dynamics. To detect collision using joint torque sensor data, a comparative study was conducted using data-based machine learning algorithm. Data was collected from the actual 3 degree-of-freedom (DOF) robot manipulator, and the data was labeled by threshold and handwork. Using support vector machine (SVM), decision tree and k-nearest neighbors KNN method, we derive the optimal parameters of each algorithm and compare the collision classification performance. The simulation results are analyzed for each method, and we confirmed that by an optimal collision status detection model with high prediction accuracy.