목적 : 본 연구는 Polydimethylsiloxane(PDMS)를 기반으로 다양한 첨가제를 사용하여 고 기능성 안 의료용 고분자를 제조한 후, 제조된 렌즈 표면에 생체적합성 및 습윤성이 우수한 collagen을 코팅하여 물성을 비교 분석 하였다.
방법 : 렌즈 제조를 위해 PDMS와 친수성 모노머인 N,N-dimethylacrylamide(DMA), 2-Hydroxyethyl methacrylate(HEMA)를 주재료로 사용하였으며, 교차결합제인 Ethylene glycol dimethacrylate(EGDMA)와 열 개시제인 Azobisisobutyronitrile(AIBN)을 사용하였다. 또한 기능성 첨가제로는 1,3-Bis(3-aminopropyl) tetramethyldisiloxane(TMDS), Polyvinylpyrrolidone(PVP), 2-(Trifluoromethyl)styrene 및 collagen을 사 용하였다. 제조된 렌즈의 물성 평가를 위해 광투과율, 굴절률, 함수율, 산소투과율 그리고 인장강도를 각각 측정하였으 며, 접촉각 측정을 통해 습윤성을 평가하였다.
결과 : TMDS의 첨가비율에 따라 렌즈의 산소투과율은 약 28~45 ×10⁻¹¹(cm²/sec)(mlO²/ml×mmHg)으로 나타내었으며, PVP 및 2-(Trifluoromethyl)styrene가 첨가된 렌즈의 습윤성 및 인장강도는 56~46° 그리고 0.11~0.17 kgf/mm² 의 범위로 각각 나타났다. 다양한 첨가제를 사용함으로써 제조된 렌즈의 기능성이 향상되었 으며, 특히 콜라겐 첨가제의 사용은 하이드로겔 표면의 접촉각을 매우 감소시켜 우수한 습윤성을 가지는 것으로 나타났다.
결론 : TMDS, PVP 그리고 2-(Trifluoromethyl)styrene은 실리콘 하이드로겔 렌즈의 기능성 향상에 효과적 이며, 첨가제로서의 collagen 사용은 렌즈의 습윤성을 향상시키는 것으로 나타나 본 연구에서 사용된 재료는 안의 료용으로 다양하게 활용될 수 있을 것으로 판단된다.
Spherical Li3V2(PO4)3 (LVP) and carbon-coated LVP with a monoclinic phase for the cathode materials are synthesized by a hydrothermal method using N2H4 as the reducing agent and saccharose as the carbon source. The results show that single phase monoclinic LVP without impurity phases such as LiV(P2O7), Li(VO)(PO4) and Li3(PO4) can be obtained after calcination at 800 oC for 4 h. SEM and TEM images show that the particle sizes are 0.5~2 μm and the thickness of the amorphous carbon layer is approximately 3~4 nm. CV curves for the test cell are recorded in the potential ranges of 3.0~4.3 V and 3.0~4.8 V at a scan rate of 0.01 mV s–1 and at room temperature. At potentials between 3.0 and 4.8 V, the third Li+ ions from the carbon-coated LVP can be completely extracted, at voltages close to 4.51 V. The carbon-coated LVP exhibits an initial specific discharge capacity of 118 mAh g–1 in the voltage region of 3.0 to 4.3 V at a current rate of 0.2 C. The results indicate that the reducing agent and carbon source can affect the crystal structure and electrochemical properties of the cathode materials.
최근 전세계적으로 이산화탄소 분리기술에 관한 연구가 활발하게 이루어지고 있다. 그 중 특히 분리막을 이용한 이산화탄소 분리는 타 방식에 비해 다양한 장점으로 광범위하게 연구되고 있다. 본 연구에서는 고선택성을 지닌 Polyhedral oligomeric silsesquioxane(POSS)과 고투과성을 지닌 Poly(ethylene glycol)으로 이산화탄소 포집에 우수한 성능을 나타내는 POSS-PEG를 합성하고 특성평가하는 것에 중점을 두었다. 1H-NMR스펙트럼과 FT-IR 스펙트럼을 활용 하여 합성의 유무를 확인하였고 PAN지지체에 코팅하는 방식으로 복합막을 제조하였다. 기체특성평가를 실시하기 위해 기체투과에 필요한 실험모듈을 제작하였고 이산화탄소 투과특성을 평가하였다.
본 연구에서는 라포나이트계 무기물 소재를 이온교환방법을 이용하여 실리케이트 층내에 술폰산기를 도입시켰으며 이를 이용하여 복합막을 제조한 후 특성 평가를 진행하였다. 층상구조를 가지는 라포나이트의 도입을 통하여 메탄올 투 과도가 감소하는 것을 확인할 수 있었으며, 동시에 술폰산기의 도입을 통하여 프로톤 전도도가 향상됨을 확인 할 수 있었다.
고분자 전해질 막의 성능을 개선하고자 사용된 대표적인 무기물인 solid acid가 첨가된 복합막의 경우 고온에서 높은 열안정성을 나타내며 친수성이 강해지는 장점을 나타내지만 물에 녹는 단점을 가지고 있다. 그러므로 본 연구에서는 phosphotungstic acid(PWA)의 이온전도성을 증가시키며 물에 용해되는 성질을 제거하기 위하여 실리카 입자를 sol-gel법을 이용하여 술폰산기와 아민그룹을 도입시킨 입자를 제조한 후 sulfonated poly(arylene ether sulfone)(SPAES)고분자에 첨가하여 복합막을 제조하였으며 특성평가가 이루어졌다.
The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si (64.52 m2g−1) is much higher than that before etching Si/MgO (4.28 m2g−1) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.
Si-C composite with hollow spherical structure was synthesized using ultrasonic treatment of organosilica powder formed by hydrolysis of phenyltrimethoxysilane. The prepared powder was pyrolyzed at various temperatures ranging from 900 to 1300 ˚C under nitrogen atmosphere to obtain optimum conditions for Li-ion battery anode materials with high capacity and cyclability. The XRD and elemental analysis results show that the pyrolyzed Si/C composite at 1100 ˚C has low oxygen and nitrogen levels, which is desirable for increasing the electrochemical capacity and reducing the irreversible capacity of the first discharge. The solid Si-C composite electrode shows a first charge capacity of ~500 mAhg-1 and a capacity fade within 30 cycles of 0.93% per cycle. On the other hand, the electrochemical performance of the hollow Si-C composite electrode exhibits a reversible charge capacity of ~540 mAhg-1 with an excellent capacity retention of capacity loss 0.43% per cycle up to 30 cycles. The improved electrochemical properties are attributed to facile diffusion of Li ions into the hollow shell with nanoscale thickness. In addition, the empty core space provides a buffer zone to relieve the mechanical stresses incurred during Li insertion.
Petroleum pitch and coke with wet mixture method or with dry mixture method were investigated to develop the composite anodic carbon material of high power lithium ion battery. Cokes coated with pitch were obtained by the heat treatment of mixture of cokes and pitch with different weight ratios at 800~1200℃. The charge and discharge characteristic of the consequent composite anodic carbon material assembled in batteries was tested. Cokes with wet mixture method have a smooth surface and their capacity changed little with changing temperature and content as compared to the cokes with dry mixture method. Although the reversible capacities showed different values by the anode manufacturing method, the composite anode with the mixture of 20 wt% of petroleum pitch and 80 wt% of coke showed the higher power capability and initial efficiency than the pitch based anode. However, the reversible capacity of the composite anode showed the reduced value as compared with the pitch based anode.
분리막 공정은 에너지 절약형 분리공정으로 전통적인 증류 분리공정과 비교하여 높은 선택도를 나타내기 때문에 액상 혼합물 분리의 대체 공정으로서 주목받고 있다. 제올라이트 막을 비롯한 무기분리막은 유기분리막의 단점을 보완하고 혹독한 조업조건에서도 운전이 가능한 장점을 지니고 있다. 최근 기존의 제올라이트 분리막의 단점을 보완하고 더욱 향상된 분리성능을 위한 새로운 무기분리막 재료들이 연구되어지고 있다. Kalsilite는 Si/Al 비율이 1로써 기존의 4A 제올라이트와 같이 친수성을 나타낼 것으로 예상되며 세공의 크기가 4A보다 더 작은 0.36 nm로 분리막으로 제조 시 가스분리, 물/유기물 혼합물에서 물의 선택적 분리가 가능할 것이다. 본 연구에서는 Si : Al : K : H2O = 1 : 1 : 8 : 60의 원료 포성 비율을 사용하여 kalsilite 분말을 경제적으로 수열합성 할 수 있는 새로운 공정을 개발하였으며. 최적의 합성조건인 합성온도 300℃, 합성시간 6시간으로 kalsilite를 합성할 수 있었다. XRD 분석을 통하여 kalsilite임을 확인하였으며 입도 분석 결과 평균입도는 2.73 μm이었다. 증기흡착 결과 kalsilite는 유기물보다 물에 대한 흡착능력이 큰 친수성 알루미노실리케이트임을 알 수 있었다.
MBR 공정에서 가장 문제시되는 부분은 실제 공정상에서 막 표면에 오염이 발생하는 문제이다. 일반적으로 막 오염은 활성 슬러지들이 막 표면에 퇴적되어서 일어나며 이로 인해 심각한 투과 유량의 감소를 야기하게 된다. 본 연구에서는 막 오염 저항성이 뛰어난 나노 입자를 분리막 표면에 함침시켜 MBR 막을 제작하였으며 이 입자들은 막 표면에서 활성 슬러지들이 쉽게 달라 붙지 못하는 역할을 수행하게 된다. 즉, 뛰어난 투수량을 지닌 정밀여과막에 나노 입자를 첨가함으로서 실제 MBR 공정에서 막 오염을 저감시킴으로서 투수량을 보전할 수 있게 하였다. 이들을 이용하여 MBR 공정에서 막 오염이 휠씬 적게 일어나는 것을 확인하였으며 이를 바탕으로 현장에 적용하여 막 오염 저항성을 확인하였다.
숏크리트는 특성상 조기체적 불안성에 노출되므로, 강섬유등의 보강재를 사용한다. 그러나 해저터널 시공을 위한 숏크리트는 지속적으로 해수에 노출되므로 강섬유는 부식의 우려가 존재한다. 따라서 부식의 우려가 없는 폴리올레핀 섬유를 강섬유와 동시에 사용하여 숏크리트용 콘크리트의 물리적 특성을 분석하고자 한다. 각 섬유의 혼입율을 달리하여 압축강도, 휨강도 및 염해저항성을 평가한 결과 폴리올레핀 섬유와 강섬유의 혼합비율은 50:50이 적절할 것으로 판단된다.