The purpose of this research is to understand the change of runoff characteristics by estimated spatial rainfall. Therefore, this paper largely composed of two parts. First, we compared the simulated result according to estimation method, ID(Inverse Distance Method, ID2(Inverse Square Distance Method), and Kr(General Covariance Kriging Method), after letting miss rainfall data to the observed data. Second, we reviewed the runoff characteristics of the distributed runoff model according to the estimated spatial rainfall. On the basis of Yuseong water level station, we select the target basin as Gabchun watershed. We assumed 1 point or 2 point of the 6 rainfall gauge stations in watershed were missed. We applied the spatial rainfall distributed by Kr to Hy-GIS GRM, distributed runoff model. When 1 point rainfall data is missed, Kr is superior to others in point rainfall estimation and runoff estimation of Hy-GIS GRM. However, in case rainfall data of 2 points is missed, all of three methods did not give suitable result for them. In conclusion, Kr showed better applicability than other estimated methods if rainfall’s data less than 2 points is missed.
강우자료는 수문 해석에 있어 가장 기본이 되는 입력 자료이며, 다양한 원인에 의해 결측이 발생된다. 본 연구에서는 복잡한 자연현상 문제 해결에 그 응용성이 입증된 신경망 기법을 이용하여 결측 처리된 강우를 추정하기 위해서 소양강댐 유역 12개 강우량 관측소를 대상으로 신경망 모형을 구축하였으며, 모형의 성능 평가를 위해 실무에서 가장 많이 사용되고 있는 우량 보정 방법인 역거리법(RDS)과 산술평균법(AMM)으로 추정한 값과 비교하여 신경망을 이용한 추