Here, we have demonstrated the successful exfoliation of graphite into a layered material with scotch tape-like exfoliation. Sulfur acts as an exfoliating agent and exfoliates the loosely bounded graphite stacks. The shear force by ball milling provides the force required to overcome the van der Waals force between the layers. The MnO2 nanorods were synthesized using a KMnO4 precursor in a hydrothermal arrangement, and due to their intrinsic chemisorption capability, they were doped for polysulfide trapping. With an initial capacity of 1150 mAh/g achieved by the MnO2 nanorod-doped exfoliate-graphite/sulfur composite material, the material has displayed its application in lithium–sulfur batteries, but its use is not limited; it can be a low-cost eco-friendly solution to various energy storage systems with extensive structural qualities.
This study describes the doping effect of Yb2O3 on microstructure, electrical and dielectric properties of ZnO-V2O5- MnO2-Nb2O5 (ZVMN) ceramic semiconductors sintered at a temperature as low as 900°C. As the doping content of Yb2O3 increases, the ceramic density slightly increases from 5.50 to 5.54 g/cm3; also, the average ZnO grain size is in the range of 5.3-5.6 μm. The switching voltage increases from 4,874 to 5,494 V/cm when the doping content of Yb2O3 is less than 0.1 mol%, whereas further doping decreases this value. The ZVMN ceramic semiconductors doped with 0.1 mol% Yb2O3 reveal an excellent nonohmic coefficient as high as 70. The donor density of ZnO gain increases in the range of 2.46-7.41×1017 cm−3 with increasing doping content of Yb2O3 and the potential barrier height and surface state density at the grain boundaries exhibits a maximum value (1.25 eV) at 0.1 mol%. The dielectric constant (at 1 kHz) decreases from 592.7 to 501.4 until the doping content of Yb2O3 reaches 0.1 mol%, whereas further doping increases it. The value of tanδ increases from 0.209 to 0.268 with the doping content of Yb2O3.
For use in ultrasonic actuators, we investigated the structural and piezoelectric properties of (1 - x)Pb(Zr0.515Ti0.485)O3 - xPb(Sb1/2Nb1/2)O3 + 0.5 wt% MnO2 [(1 - x)PZT - xPSN + MnO2] ceramics with a variation of x (x = 0.02, 0.04, 0.06, 0.08). All the ceramics, which were sintered at 1250˚C for 2 h, showed a typical perovskite structure, implying that they were well synthesized. A homogeneous micro structure was also developed for the specimens, and their average grain size was slightly decreased to 1.3μm by increasing x to 0.8. Moreover, a second phase with a pyrochlore structure appeared when x was above 0.06, which resulted in the deterioration of their piezoelectric properties. However, the 0.96PZT-0.04PSN+MnO2 ceramics, which corresponds with a morphotropic phase boundary (MPB) composition in the (1 - x)PZT - xPSN + MnO2 system, exhibited good piezoelectric properties: a piezoelectric constant (d33) of 325 pC/N, an electromechanical coupling factor (kp) of 70.8%, and a mechanical quality factor (Qm) of 1779. The specimens with a relatively high curie temperature (Tc) of 305˚C also showed a significantly high dielectric constant (εr) value of 1109. Therefore, the 0.96PZT - 0.04PSN + MnO2 ceramics are suitable for use in ultrasonic vibrators.