This paper proposes a possibility of using active front-end rectifier with the SVPWM method for induction motor speed control, which is applicable to small electric propulsion boats. The proposed method can produce a more precise sinusoidal input current waveform and a higher power factor than conventional methods. Its speed, torque, input current, DC voltage, and load current control performance are similar to or better than those of conventional methods. Through computer simulations using the PSIM program, the validity of the proposed method was verified by comparing and analyzing the characteristics of the conventional methods and the proposed method.
This paper deals with the disturbance observer (DOB) based sliding mode control (SMC) for a DC motor to control motor rotating speed precisely and to ensure strong robustness against disturbance including load torque and parameter variation. The reason of steady state error in speed on conventional SMC without DOB is analyzed in detail. Especially, the suggested DOB is designed to prevent measuring noise and harmonics caused by derivative operation on rotating speed. The control performance of the DOB based SMC is evaluated by the various simulations. The simulation results showed that the DOB based SMC had more robust performance than the SMC system without DOB. Especially, precise speed control was possible even though motor parameter variation and load torque was added to the system.
전남 인근해역에서 많이 사용하는 어로 작업에 사용하는 연승기는 전동기와 2개의 디스크 롤러를 결합하여 1톤 미만의 소형 어선에서 많이 활용하고 있다. 연승기의 작업특성상 연승줄을 끌어 올릴 때 많은 부하가 필요하므로 연승기의 전동기도 단방향으로만 속도 조절을 하면 된다. 본 논문에서는 1톤 미만의 어선의 연승기에 주로 사용되는 400W 용량의 직류전동기를 대상으로 제어 회로를 구성하였으며, 연승기 전동기의 단방향 속도제어를 위해 PWM 전용칩, Half bridge driver 및 MOSFET를 이용하여 제어기를 제작하였다. 또한 현재 사용중인 대분분의 연승기에 빠져있는 배터리 잔량표시기, 배터리 과방전 방지 장치 및 배터리 결선 오류 방지기능 등의 보호기능을 부가하여 사용자 편의를 강화하였다. 이로 인해 배터리 전압이 11.5V 이하가 되면 전동기는 자동을 동작을 정지하여 배터리의 과방전을 막을 수 있었고, 어선 작업자의 빈번한 배터리 결선 실수를 방지하여 컨트롤러의 안전한 사용이 가능토록 하였다. 이러한 연승기를 실제 어로 작업에 시험운전결과 매우 양호하게 동작함을 확인할 수 있었다.
The paper presents a digital speed control approach of induction motor systems by using a digital redesign method and adopting a well known 2nd order model as the system model equation. The basic concept using the modeling equation is induced from the control theory stand point such that we can describe usually the motor system connected by inverter, generator and load etc. just as a mechanical system to be controlled. The concept does not demand us the complicated vector-based modeling equation adopted in the traditional methods for the speed control of induction motor. The effectiveness of the servo control system composed by the above mentioned design concept is illustrated by the experimental results in the presence of step reference change and generator load variation. It is observed from the experimental results that the steady state error of the experimental set up becomes zero after some regulation time and the induction motor system is robust in spite of reference signal change and load variation of generator.