The surface roughness of Al, Ag and Ni nano-powders which were prepared by pulsed wire evaporation method was quantified based upon the fractal theory. The surface fractal dimensions of metal nano-powders were determined from the linear relationship between In and Inln () using multi-layer gas adsorption theory. Moreover, the fractal surface image was realized by computer simulation. The relationship between preparation condition and surface characteristics of metal nano-powders was discussed in detail.
Synthesis of iron nanopowder by room-temperature electrochemical reduction process of nanopowder was investigated in terms of phase evolution and microstructure. As process variables, reduction time and applied voltage were changed in the range of h and V, respectively. From XRD analyses, it was found that volume of Fe phase increased with increasing reduction time and applied voltage, respectively. The crystallite size of Fe phase in all powder samples was less than 30 nm, implying that particle growth was inhibited by the reaction at room temperature. Based on the distinct equilibrium shape of crystalline particle, phase composition of nanoparticles was identified by TEM observation.