To ensure the safety of disposal facilities for radioactive waste, it is essential to quantitatively evaluate the performance of the waste disposal facilities by using safety assessment models. This paper addresses the development of the safety assessment model for the underground silo of Wolseong Low-and Immediate-Level Waste (LILW) disposal facility in Korea. As the simulated result, the nuclides diffused from the waste were kept inside the silo without the leakage of those while the integrity of the concrete is maintained. After the degradation of concrete, radionuclides migrate in the same direction as the groundwater flow by mainly advection mechanism. The release of radionuclides has a positive linear relationship with a half-life in the range of medium half-life. Additionally, the solidified waste form delays and reduces the migration of radionuclides through the interaction between the nuclides and the solidified medium. Herein, the phenomenon of this delay was implemented with the mass transfer coefficient of the flux node at numerical modeling. The solidification effects, which are delaying and reducing the leakage of nuclides, were maintained the integrity of the nuclides. This effect was decreased by increasing the half-life and the mass transfer coefficient of radionuclides.
태풍 매미 통과 시에 부산연안에서 폭풍해일고를 해석하기 위한 수치실험을 수행하였다. 태풍 매미는 2003년 9월 12일 21:00에 중심기압 950hPa로 우리나라 남해안에 상륙하였으며, 지난 수십년 간에 걸쳐 최악의 해안재해로 기록되었다. 태풍 매미 통과시 부산항, 여 수항, 통영항, 마산항, 제주항 및 서귀포항에서 관측된 폭풍해일고와 계산된 해일고의 시계열을 비교하였으며, 계산결과와 관측결과는 잘 일치하였다. 태풍해일고는 마산항에서 약 230 cm로 가장 크게 나타났으며, 여수항과 통영항에서는 약 200 cm, 부산항에서는 약 75 cm로 나 타났다. 폭풍해일 수치실험결과, 부산 동부 연안에서 해일고는 52∼55 cm 범위이고, 외해로 갈수록 해일고는 감소하였다. 따라서 반폐쇄된 만에서는 해일고의 상승으로 인한 연안 침수범람 피해가 크게 발생할 것으로 사료되며, 본 수치실험결과는 태풍으로 인한 연안재해 저감 을 위한 중요한 자료로 사용될 수 있다.
The safety of deep geological disposal systems has to be ensured to guarantee the isolation of radionuclides from human and related environments for over a million years. Over such a long timeframe, disposal systems can be influenced by climate change, leading to significant long-term impacts on the hydrogeological condition, including changes in temperature, precipitation and sea levels. These changes can affect groundwater flow, alter geochemical conditions, and directly/ indirectly impact the stability of the repository. Hence, it is essential to conduct a safety assessment that considers the long-term evolution induced by climate change. In this context, the Korea Atomic Energy Research Institute (KAERI) is developing the Adaptive Process-based total system performance assessment framework for a geological disposal system (APro). Currently, numerical modules for APro are under development to account for the longterm evolution that can influence groundwater flow and radionuclide transport in the far-field of the disposal system. This study focuses on the development of two numerical modules designed to model permafrost formation and buoyance force due to relative density changes. Permafrost is defined as a ground in which temperature remains below zero-isotherm (0°C) continuously for more than two consecutive years. In regions where permafrost forms, the relative permeability of porous media is significantly reduced. The changes in permeability due to permafrost formation are modelled by calculating the unfrozen fluid content within a porous medium. Meanwhile, buoyancy force can occur when there is a difference in density at the boundary of two distinct water groups, such as seawater (salt water) and freshwater. Sea level change associated with climate change can alter the boundary between seawater and freshwater, resulting in changes in groundwater flow. The buoyancy force due to relative density is modelled by adjusting concentration boundary conditions. Using the developed numerical modules, we evaluated the long-term evolution’s effects by analyzing radionuclide transport in the far-field of the disposal system. Incorporating permafrost and buoyancy force modelling into the APro framework will contribute valuable insights into the complex interactions between geological and climatic factors, enhancing our ability to ensure the secure isolation of radionuclides for extended periods.
A numerical approximation for modeling morphological behavior in open channels is presented in this paper. The scheme is based on Godunov-type finite volume method which is preferred for its conservation preserving ability. The Saint Venant equations for river flow coupled with sediment continuity form the governing system of equations. Flux computation through cell interfaces is computed by Harten-Lax-van Leer-Contact (HLLC) approximate Riemann solver method at each time step. Second-order temporal and spatial accuracy is confirmed by employing Henn’s method and high-order reconstruction technique with limited gradient, respectively. The coupled model is able to handle discontinuities in surface water flow and bed profiles, and prevent spurious oscillations in all cases. A hydrostatic reconstruction technique is used to handle wet-dry fronts and avoid negative water depths and unphysical high velocities in complex domains. A modification in surface gradient method satisfies the well-balancing between flux computations of momentum and slope-source terms. Comparison of model-results for various tests with their analytical and experimental solutions shows that our numerical scheme is robust in simulating steady and unsteady flows over a various domains.
하천에 설치된 보와 같은 구조물은 하천의 수리적 특성을 변화시켜 보의 상류부에는 퇴적과 하류부에는 침식이 진행되어 단·장기적인 하상의 변화를 가져온다. 특히 우리나라의 경우 4대강 사업으로 국가하천의 과도한 준설로 인한 하천의 평형상태가 파괴되고 다시 평형상태를 복원하기 위한 하천의 침식과 퇴적작용으로 하상변동 발생이 예상되므로 단·장기적인 하상변동의 양상을 예측하고 분석하는 연구가 필요하다.
따라서 본 연구에서는 금강 중·하류부에 건설된 세종보 상류 약 600m 구간에 대해 하상변동 변화를 실측하였으며 실측결과와 2차원 수치모형인 SED-2D를 이용하여 흐름특성 및 하상변동을 모의한 결과를 비교하여 모형의 적용성을 평가하고 세종보 건설 시점을 기준으로 건설 1년, 5년, 10년 후의 단·장기적인 하상변동 양상을 분석하였다. 그 결과 세종보 건설 1년 후 상류 600m 구간에 169,263㎥의 토사가 퇴적되었으며 세종보 건설 5년 후에는 108,808.0㎥의 토사가 퇴적되었으며 세종보 건설 10년 후에는 63,713.5㎥의 토사가 퇴적되었다. 가동보 수문 개도 시 빠른 유속의 영향으로 보 직상류의 퇴적양은 적은 것으로 모의되었다. 세종보 상류의 하상변동 양상은 세종보 상류부 전체적으로 퇴적되는 경향을 보였으며 특히 우안에 집중적으로 퇴적 현상이 발생하였다. 이는 우안의 오목한 지형적 특성으로 인한 정체구역으로 유속이 낮게 모의되어 퇴적현상이 집중되는 것으로 분석되었다.
보가 건설된 하천은 취수가 용이하고 주운 등을 위한 수위조절이 가능한 이점이 있으나 유속감소로 인한 유사이송능력 저하로 보 상류구간에 퇴적되어 하상의 불안정화를 초래한다. 행정중심복합도시를 통과하는 국가하천 금강에 설치된 세종보 우안 소수력발전소에 인접한 가동보 상류구간에 토사가 퇴적되어 수문운영에 지장을 초래한 바 있다. 세종보 상류의 토사퇴적 문제점 분석과 하상안정화 방안수립을 위해 하상변동의 정량적 분석과 예측이 필요하다.
본 연구에서는 금강 중·하류부에 건설된 세종보 상류 약 600m 구간에 대해 홍수기 전·후의 하상단면을 측정하여 하상변동을 분석하였고 실측 결과와 수치모형 결과를 비교하여 대상구간에 수치모형의 적용성을 평가하였으며 대상구간의 단·장기하상변동을 예측하고 시나리오별 수문운영에 따른 하상변동 양상을 파악하여 하상변동으로 인한 문제점 해결을 위한 적정 수문운영방안을 제시하였다. 그 결과 SED-2D 모형으로 모의한 하상변동의 정량적인 결과와 하상변동 양상이 하상단면 측정에 의한 실측한 하상변동 결과와 유사한 경향을 보여 연구 대상구간의 SED-2D 모형의 적용성이 높은 것으로 평가되었다. 세종보 건설 1년 후 연구대상구간에 169,263㎥의 토사가 퇴적되었으며 세종보 건설 5년 후에는 164,652.0㎥의 토사가 퇴적되었으며 세종보 건설 10년 후에는 63,713.5㎥의 토사가 퇴적되었다. 가동보 수문운영에 따른 하상변동량은 우안문비 방류 시 하상변동량은 154,740.0㎥, 중앙문비 방류 시 하상변동량은 149,023.0㎥, 좌안문비 방류 시 하상변동량은 163,841.0㎥, 전문비 방류 시 하상변동량은 63,713.5㎥로 분석되어 하상변동량이 가장 적은 전수문 개방이 보 상류의 퇴적현상을 최소화할 수 있는 수문운영방안으로 분석되었다.
본 연구는 하천의 골재채취 혹은 하천준설로 인하여 교란된 하천의 적응과정을 하도의 평면변화에 적합하도록 일반좌표계 상에서 흐름 및 하상변동을 모의할 수 있는 2차원 수치모형을 이용하여 파악하였다. 수치해석 기법으로는 흐름의 운동량 방정식에서 이류항은 CIP (Cubic Interpolated Pseudoparticle)법을 적용하였으며, 확산항은 중앙차분법을 적용하였다. 하천준설 혹은 골재채취에 의해 형성된 웅덩이는 초기에 웅덩이 상류 지점에서 급격한