Research has been conducted on a wide variety of 3D printer circular fin heads. In this study, we proposed a sequence and method for a more efficient mesh study in the CFD model to calculate the Nusselt number of the circular fin head of an FDM 3D printer using the Taguchi method, sensitivity, and ANOVA. As a result, the CFD model to calculate the Nusselt number of the circular fin head of an FDM 3D printer has high sensitivity and contribution in the order of Base target mesh size, Prism layer number, and Prism layer thickness. We propose to increase work efficiency by performing mesh optimization in the order of factors with high sensitivity to level changes.
Local Nusselt number and temperature field distribution within the compound duct with gap have been measured. Measurement of air and wall temperature span a range of gap width from 2mm to 6mm. Also, the Reynolds number is variated from 20,000 to 40,0000. In order to observe the correlations between gap width and turbulent heat transfer, the present measurement has tried to verify the enhancement effect of heat transfer when a gap exists within the compound channel. From this measurement, we could see that the pulsating flow has generated a strong turbulent flow mixing within the compound channel. And the turbulent flow mixing in the pulsating flow plays an effective role of enhancing the Nusselt number by making the fluid temperature uniformly within the compound channel.